Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find complexity of regulation by microRNA genes

05.04.2005


Collaborating researchers at New York University and Rockefeller University have discovered that microRNA genes, which have recently been shown to have key roles in gene regulation, can team up and regulate target genes in mammals. MicroRNAs are a recently discovered large class of regulatory, non-coding genes, which bind to partially complementary sites in target messenger RNA to regulate their stability and translation. However, little has been known about the biological function of microRNAs--a process the current study sought to explore.



The paper, published in the latest issue of the journal Nature Genetics, found that a microRNA gene regulates, on average, 200 different human gene transcripts and that many microRNAs can coordinate their activities to regulate specific target genes. The paper contains detailed genome-wide predictions for all human microRNAs as well as tissue-specific predictions. Several predictions were validated experimentally. The findings demonstrate an unforeseen staggering complexity of gene regulation executed by microRNAs on a genome-wide level.

In this study, lead author Nikolaus Rajewsky, a genomics faculty member in NYU’s Center for Comparative Functional Genomics and an assistant professor in the Department of Biology, and the research team developed "PicTar," a new algorithm for the identification of microRNA target sites in the genome and used it to compare sequences from eight different vertebrates.


"The study demonstrates that computational methods, in conjunction with the exploding amounts of available sequence data from different species, have the power to not only arrive at large-scale and yet specific, testable predictions for gene regulation, but also to produce new general insights into how gene regulation is organized in the genome," says Rajewsky, who holds an affiliated appointment at NYU’s Courant Institute of Mathematical Sciences.

Rajewsky’s research program on bioinformatics predictions of regulatory elements in genomes is being conducted at NYU’s Center for Comparative Functional Genomics, where the focus of the research programs is to combine genomic approaches with developmental genetics and evolution to understand how changes in genomes give rise to the diversity of regulatory mechanisms in animals and plants.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>