Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find complexity of regulation by microRNA genes


Collaborating researchers at New York University and Rockefeller University have discovered that microRNA genes, which have recently been shown to have key roles in gene regulation, can team up and regulate target genes in mammals. MicroRNAs are a recently discovered large class of regulatory, non-coding genes, which bind to partially complementary sites in target messenger RNA to regulate their stability and translation. However, little has been known about the biological function of microRNAs--a process the current study sought to explore.

The paper, published in the latest issue of the journal Nature Genetics, found that a microRNA gene regulates, on average, 200 different human gene transcripts and that many microRNAs can coordinate their activities to regulate specific target genes. The paper contains detailed genome-wide predictions for all human microRNAs as well as tissue-specific predictions. Several predictions were validated experimentally. The findings demonstrate an unforeseen staggering complexity of gene regulation executed by microRNAs on a genome-wide level.

In this study, lead author Nikolaus Rajewsky, a genomics faculty member in NYU’s Center for Comparative Functional Genomics and an assistant professor in the Department of Biology, and the research team developed "PicTar," a new algorithm for the identification of microRNA target sites in the genome and used it to compare sequences from eight different vertebrates.

"The study demonstrates that computational methods, in conjunction with the exploding amounts of available sequence data from different species, have the power to not only arrive at large-scale and yet specific, testable predictions for gene regulation, but also to produce new general insights into how gene regulation is organized in the genome," says Rajewsky, who holds an affiliated appointment at NYU’s Courant Institute of Mathematical Sciences.

Rajewsky’s research program on bioinformatics predictions of regulatory elements in genomes is being conducted at NYU’s Center for Comparative Functional Genomics, where the focus of the research programs is to combine genomic approaches with developmental genetics and evolution to understand how changes in genomes give rise to the diversity of regulatory mechanisms in animals and plants.

James Devitt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>