Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASH Clinical Research Network Launches New Trial for Treatment of Liver Disease

04.04.2005


The Nonalcoholic Steatohepatitis (NASH) Clinical Research Network is launching its first two clinical trials for the study of NASH, a liver disease that resembles alcoholic liver disease but occurs in patients who drink little or no alcohol. NASH occurs most often in adults over the age of 40 who are overweight or have diabetes, insulin resistance (pre-diabetes), or hyperlipidemia (excess concentrations of fatty materials in the blood). NASH can also occur in children, the elderly, normal-weight, and non-diabetic persons. The NASH Clinical Research Network and the clinical trial are funded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), one of the National Institutes of Health (NIH).



NASH accounts for about 10 percent of newly diagnosed cases of chronic liver disease, and ranks as one of the leading causes of cirrhosis in the United States, following hepatitis C and alcoholic liver disease. Characteristics of the disease include abnormal liver enzyme levels, liver cell injury, inflammation and fibrosis in the liver, and excess amounts of fat stored in the liver. Though most people with NASH feel healthy and show no outward signs of a liver disease, NASH is progressive and can lead to cirrhosis and end-stage liver disease, which may require liver transplantation. The only way to distinguish NASH from other forms of fatty liver disease is with a liver biopsy.

"NASH has become a serious public health problem, because the incidence of NASH has risen with the increase of overweight and obesity in this country," says Patricia Robuck, Ph.D., M.P.H., project scientist for the NASH Clinical Research Network and director of the Clinical Trials Program within the Division of Digestive Diseases and Nutrition at the NIDDK.


The NASH Clinical Research Network, consisting of eight clinical centers and a data coordinating center, was formed in September 2002 to conduct research on the natural history, pathogenesis, and treatment of NASH. With the information collected from observational studies and clinical trials on both adult and pediatric NASH patients, the Clinical Research Network will create a database of information to be used by researchers in the development of therapies for NASH. The Network also plans to encourage collaborations among clinical and basic researchers to generate information and develop ancillary studies using the resources of the database.

While there are currently no proven treatments for NASH, results from small pilot trials suggest that certain diabetes drugs improve liver enzyme levels and may slow or reverse the progression of NASH. Other pilot studies indicate that patients with this liver disease show improvement by following a regimen of balanced diet and exercise and also respond favorably to treatment with antioxidants such as vitamin E.

The first two clinical trials for the NASH Clinical Research Network will focus on the use of insulin-sensitizing agents and vitamin E for the treatment of NASH in adults and in children. The first clinical trial, the Pioglitazone versus Vitamin E versus Placebo for the Treatment of Nondiabetic Patients with Nonalcoholic Steatohepatitis (PIVENS) trial is currently recruiting non-diabetic patients and will enroll 240 adults over 2 years into one of three treatment groups. Men and women aged 18 years and older will be assigned to either the vitamin E group, pioglitazone (an insulin-sensitizing agent) group, or placebo group. Potential patient volunteers will receive a standard oral glucose tolerance test after a 12-hour fast to rule out the presence of diabetes. Volunteers will also undergo liver biopsies at the start and the end of the trial.

"We believe that even in the absence of diabetes, drugs that improve insulin resistance may improve NASH. The PIVENS trial will test the possibility that both pioglitazone and vitamin E are effective treatments for NASH," says Arun Sanyal, M.D., co-chair, NASH CRN and principal investigator for the center at Virginia Commonwealth University in Richmond.

The second clinical trial, the "Treatment of Nonalcoholic Fatty Liver Disease (NAFLD) in Children" (TONIC) trial, will enroll 180 children with NAFLD to receive vitamin E, metformin (an insulin-sensitizing agent), or placebo over 18 months. The TONIC trial will begin recruitment in June 2005.

"Having a clear understanding of the pathogenesis of NASH and its natural history in both adults and children should translate into better treatments that slow or prevent NASH from progressing, ultimately improving the quality of life of patients with this liver disease," says Jay Hoofnagle, M.D., director, NIDDK Liver Disease Research Branch.

The eight clinical centers of the NASH Clinical Research Network recruiting patients include: Case Western Reserve University in Cleveland; Duke University Medical Center in Raleigh-Durham (adult site)/ Johns Hopkins University in Baltimore (pediatric site); Indiana University in Indianapolis; St. Louis University in Missouri; University of California in San Diego; University of California in San Francisco; University of Washington in Seattle; and Virginia Commonwealth University in Richmond. The Johns Hopkins University Bloomberg School of Public Health in Baltimore provides coordination of the research network data.

The NASH Clinical Research Network and the PIVENS and TONIC clinical trials are funded by the NIDDK and an industry partner, Takeda Pharmaceuticals. Additional funding is provided by the National Institute of Child Health and Human Development, part of the NIH, an agency of the U.S. Department of Health and Human Services.

Leslie Curtis | EurekAlert!
Further information:
http://www.niddk.nih.gov

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>