Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find how pneumonia bacteria get sugar boost to survive

04.04.2005


Meningitis and pneumonia bacteria smash into our lungs and cells to steal sugar, which helps them survive, according to research presented today from King’s College and Guy’s Hospital London, (Monday, 04 April 2005) at the Society for General Microbiology’s 156th Meeting at Heriot-Watt University, Edinburgh.



The way bacteria grow and spread is a key to the way they cause infectious diseases, say scientists trying to find ways to stop antibiotic resistant strains of bacteria responsible for pneumonia and meningitis.

Now researchers from King’s College Dental Institute based at Guy’s Hospital in London have demonstrated for the first time how bacteria can manufacture sugar to use as food from common proteins they find in our bodies.


"Life-threatening disease-causing bacteria get into our systems through our lungs, though our skin cells and through our blood," says Dr Karen Homer of King’s College. "But these sites are also all places where we have glycoproteins, which are a type of protein with a chain of linked sugar molecules. The bacterium Streptococcus pneumoniae, which is responsible for pneumonia and meningitis, can produce enzymes which snip off the sugars, providing food for the bacteria to multiply."

The researchers also found that some of the sugars released from glycoproteins may be used to form protective capsules for the bacteria when they are attacked - for instance when someone takes antibiotics. The capsules are similar to a sugar coating put on pills, forming a hard armour which defends the bacteria from our bodies’ defences.

"Now we know that S. pneumoniae can use the sugars on glycoproteins for growth, we might be able to design drugs that interfere with this process and give us another tool to fight diseases. These drugs could target the enzymes that release sugars from glycoproteins, or the transport systems which take the sugars inside the cell. Such drugs could provide a new way of treating infections or give us new antibiotics," says Dr Homer.

The researchers are now investigating compounds which stop the bacteria from breaking down glycoproteins, to see if these can slow down or prevent the bacteria from growing. New drugs based on these compounds could significantly reduce the number of deaths from pneumonia and meningitis infections, and produce drugs that bacteria are less likely to be able to resist.

It is estimated that more than 18,000 people in the UK are treated in hospital for pneumococcal pneumonia each year, with at least 3,400 deaths.

Faye Jones | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>