Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As the Protein Folds: The Tail of the Gene Tells the Tale of Machado-Joseph Disease

01.04.2005


The repetition of three little "letters" within the gene that codes for the ataxin-3 protein is both the cause of and perhaps a solution to Machado-Joseph disease and an entire family of similar genetic disorders, according to researchers at the University of Pennsylvania. Their findings, which appear today in the journal Molecular Cell, present a potential therapeutic role for the ataxin-3 protein for MJD and related disorders such as Huntington’s disease.



Machado-Joseph disease is among the most common of the nine known polyglutamine repeat disorders, a family of diseases in which the genetic code for the amino acid polyglutamine CAG becomes excessively repeated within the gene, making the protein toxic. In these diseases, the expanded polyglutamine domain causes the errant protein to fold improperly, which causes a glut of misfolded protein to collect in tissues of the nervous system, much like what occurs in Alzheimer’s and Parkinson’s diseases.

"In origami, if you misfold the paper, you can just throw the paper into the recycling bin," said Nancy Bonini, a Penn professor of biology and Howard Hughes Medical Institute investigator. "If a protein misfolds, cells rely on their own recycling system to dispose of it. It turns out that ataxin-3 may influence this system, especially for recycling those that have misfolded due to excessive polyglutamine repeats.. Our findings show that ataxin-3 not only blunts the toxicity of mutant versions of itself but can also mitigate neurodegeneration induced by other such mutant polyglutamine proteins."


Machado-Joseph disease is among the most common dominantly inherited ataxias, a neurodegenerative disorder marked by a gradual decay of muscle control. MJD typically appears in adulthood, with a longer repeat expansion being associated with earlier onset and more severe disease. Its symptoms, uncoordinated motor control, worsen with time.

To study just how the ataxin-3 protein relates to disease, Bonini and her colleagues worked in a simple model organism, the fruit fly, engineering flies to express both the normal human ataxin-3 protein (the protein encoded by the SCA3 gene) and a toxic human disease form of ataxin-3 with an expanded polyglutamine repeat. When both genes are in the same fruit fly, however, the functioning gene helps protect against the effects of the bad one. Their studies surprisingly demonstrated that the protective function of the ataxin-3 protein does not rely on the multiple repeats in its tail but in a region near the head. Indeed, it seems that removing or altering this region of the gene can accelerate the progress of the disease.

"The secret of ataxin-3 is that regions near the start of the protein can counterbalance the toxicity conferred by the excessive polyglutamine repeats in the mutant protein," Bonini said. "In fact, we found evidence that mutant ataxin-3 with the extra-long polyglutamine tail can mitigate its own toxicity."

According to the researchers, it may explain why even normal ataxin-3 can have multiple CAG repeats without causing disease. In other polyglutamine diseases, mutant genes with far fewer repeats can still be toxic, whereas ataxin-3 disease mutations are generally associated with much longer repeats.

"One question now is how this information can be used clinically," Bonini said. "While more research needs to be done, we are hopeful that ataxin-3 may prevent the protein accumulation associated with polyglutamine diseases and perhaps other neurodegenerative situations as well."

Researchers whose work contributed to this study are John M. Warrick (now of the University of Richmond), Lance Morabito, Julide Bilen, Beth Gordesky-Gold and Lynn Faust of Penn, and Henry L. Paulson of the University of Iowa.

Funding for this study was provided by the National Institutes of Health, the David and Lucile Packard Foundation and the Howard Hughes Medical Institute.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>