Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


As the Protein Folds: The Tail of the Gene Tells the Tale of Machado-Joseph Disease


The repetition of three little "letters" within the gene that codes for the ataxin-3 protein is both the cause of and perhaps a solution to Machado-Joseph disease and an entire family of similar genetic disorders, according to researchers at the University of Pennsylvania. Their findings, which appear today in the journal Molecular Cell, present a potential therapeutic role for the ataxin-3 protein for MJD and related disorders such as Huntington’s disease.

Machado-Joseph disease is among the most common of the nine known polyglutamine repeat disorders, a family of diseases in which the genetic code for the amino acid polyglutamine CAG becomes excessively repeated within the gene, making the protein toxic. In these diseases, the expanded polyglutamine domain causes the errant protein to fold improperly, which causes a glut of misfolded protein to collect in tissues of the nervous system, much like what occurs in Alzheimer’s and Parkinson’s diseases.

"In origami, if you misfold the paper, you can just throw the paper into the recycling bin," said Nancy Bonini, a Penn professor of biology and Howard Hughes Medical Institute investigator. "If a protein misfolds, cells rely on their own recycling system to dispose of it. It turns out that ataxin-3 may influence this system, especially for recycling those that have misfolded due to excessive polyglutamine repeats.. Our findings show that ataxin-3 not only blunts the toxicity of mutant versions of itself but can also mitigate neurodegeneration induced by other such mutant polyglutamine proteins."

Machado-Joseph disease is among the most common dominantly inherited ataxias, a neurodegenerative disorder marked by a gradual decay of muscle control. MJD typically appears in adulthood, with a longer repeat expansion being associated with earlier onset and more severe disease. Its symptoms, uncoordinated motor control, worsen with time.

To study just how the ataxin-3 protein relates to disease, Bonini and her colleagues worked in a simple model organism, the fruit fly, engineering flies to express both the normal human ataxin-3 protein (the protein encoded by the SCA3 gene) and a toxic human disease form of ataxin-3 with an expanded polyglutamine repeat. When both genes are in the same fruit fly, however, the functioning gene helps protect against the effects of the bad one. Their studies surprisingly demonstrated that the protective function of the ataxin-3 protein does not rely on the multiple repeats in its tail but in a region near the head. Indeed, it seems that removing or altering this region of the gene can accelerate the progress of the disease.

"The secret of ataxin-3 is that regions near the start of the protein can counterbalance the toxicity conferred by the excessive polyglutamine repeats in the mutant protein," Bonini said. "In fact, we found evidence that mutant ataxin-3 with the extra-long polyglutamine tail can mitigate its own toxicity."

According to the researchers, it may explain why even normal ataxin-3 can have multiple CAG repeats without causing disease. In other polyglutamine diseases, mutant genes with far fewer repeats can still be toxic, whereas ataxin-3 disease mutations are generally associated with much longer repeats.

"One question now is how this information can be used clinically," Bonini said. "While more research needs to be done, we are hopeful that ataxin-3 may prevent the protein accumulation associated with polyglutamine diseases and perhaps other neurodegenerative situations as well."

Researchers whose work contributed to this study are John M. Warrick (now of the University of Richmond), Lance Morabito, Julide Bilen, Beth Gordesky-Gold and Lynn Faust of Penn, and Henry L. Paulson of the University of Iowa.

Funding for this study was provided by the National Institutes of Health, the David and Lucile Packard Foundation and the Howard Hughes Medical Institute.

Greg Lester | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>