Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein transport in mitochondria revealed

01.04.2005


The TIM23 complex, which regulates the transport of protein to the mitochondria in a cell, is much more complicated than was previously believed. This is shown by Uppsala University researcher Maria Lind in an article in the leading journal Cell.



Together with Agnieszka Chacinska from the University of Freiburg in Germany, Maria Lind from Uppsala University is lead author of the article in Cell.

Agnieszka Chacinska’s and her study shows how the TIM23 complex functions, something that was previously unknown. The TIM23 complex regulates the transport of protein to the mitochondria in the cell. The findings reveal that the TIM23 complex is highly complicated. It can transport proteins even though there is a tension between the two sides of the complex. “The complex opens only a single channel when the protein comes, in order not to disturb the negative or positive charge on the respective sides of the complex,” explains Maria Lind. “It is essential that the voltage created by the difference in the charges be maintained when the mitochondria are to produce energy.”


The TIM23 complex can also change shape depending on where the protein is ultimately to be transported. In this way the same complex can transport proteins to different final destinations. Maria Lind and Agnieszka Chacinska have also identified a new protein, Tim21, which participates in protein transport.

Defects in mitochondria give rise to some one hundred disorders, including Huntington’s disease, Mohr-Tranebjaerg syndrome, Parkinson’s disease, and Alzheimer’s disease. “We need more knowledge about mitochondria if we are to be able to understand these diseases,” avers Maria Lind.

The study was carried out on yeast, which researchers often use as a model organism because it is one of the simplest organisms with mitochondria. “But mitochondria function in the same way in all organisms, and there are many things in yeast cells that are similar to human cells,” says Maria Lind.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>