Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein transport in mitochondria revealed

01.04.2005


The TIM23 complex, which regulates the transport of protein to the mitochondria in a cell, is much more complicated than was previously believed. This is shown by Uppsala University researcher Maria Lind in an article in the leading journal Cell.



Together with Agnieszka Chacinska from the University of Freiburg in Germany, Maria Lind from Uppsala University is lead author of the article in Cell.

Agnieszka Chacinska’s and her study shows how the TIM23 complex functions, something that was previously unknown. The TIM23 complex regulates the transport of protein to the mitochondria in the cell. The findings reveal that the TIM23 complex is highly complicated. It can transport proteins even though there is a tension between the two sides of the complex. “The complex opens only a single channel when the protein comes, in order not to disturb the negative or positive charge on the respective sides of the complex,” explains Maria Lind. “It is essential that the voltage created by the difference in the charges be maintained when the mitochondria are to produce energy.”


The TIM23 complex can also change shape depending on where the protein is ultimately to be transported. In this way the same complex can transport proteins to different final destinations. Maria Lind and Agnieszka Chacinska have also identified a new protein, Tim21, which participates in protein transport.

Defects in mitochondria give rise to some one hundred disorders, including Huntington’s disease, Mohr-Tranebjaerg syndrome, Parkinson’s disease, and Alzheimer’s disease. “We need more knowledge about mitochondria if we are to be able to understand these diseases,” avers Maria Lind.

The study was carried out on yeast, which researchers often use as a model organism because it is one of the simplest organisms with mitochondria. “But mitochondria function in the same way in all organisms, and there are many things in yeast cells that are similar to human cells,” says Maria Lind.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>