Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein transport in mitochondria revealed

01.04.2005


The TIM23 complex, which regulates the transport of protein to the mitochondria in a cell, is much more complicated than was previously believed. This is shown by Uppsala University researcher Maria Lind in an article in the leading journal Cell.



Together with Agnieszka Chacinska from the University of Freiburg in Germany, Maria Lind from Uppsala University is lead author of the article in Cell.

Agnieszka Chacinska’s and her study shows how the TIM23 complex functions, something that was previously unknown. The TIM23 complex regulates the transport of protein to the mitochondria in the cell. The findings reveal that the TIM23 complex is highly complicated. It can transport proteins even though there is a tension between the two sides of the complex. “The complex opens only a single channel when the protein comes, in order not to disturb the negative or positive charge on the respective sides of the complex,” explains Maria Lind. “It is essential that the voltage created by the difference in the charges be maintained when the mitochondria are to produce energy.”


The TIM23 complex can also change shape depending on where the protein is ultimately to be transported. In this way the same complex can transport proteins to different final destinations. Maria Lind and Agnieszka Chacinska have also identified a new protein, Tim21, which participates in protein transport.

Defects in mitochondria give rise to some one hundred disorders, including Huntington’s disease, Mohr-Tranebjaerg syndrome, Parkinson’s disease, and Alzheimer’s disease. “We need more knowledge about mitochondria if we are to be able to understand these diseases,” avers Maria Lind.

The study was carried out on yeast, which researchers often use as a model organism because it is one of the simplest organisms with mitochondria. “But mitochondria function in the same way in all organisms, and there are many things in yeast cells that are similar to human cells,” says Maria Lind.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>