Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A marker for new blood vessel formation in tumors


ávâ3 integrin expression in tumors. (Photo: Roland Haubner, et al.)

In a paper in this month’s freely-available online global health journal PLoS Medicine, Roland Haubner and colleagues describe how a compound they have developed can be used together with highly sensitive positron emission tomography (PET) scanning to measure the amount of new blood vessel growth in some tumors.

New blood vessel growth - angiogenesis - is important for the growth of tumors; several drugs target angiogenesis specifically. The compound previously developed by Haubner and colleagues is a fluorine-labeled glycopeptide, ([18F]Galacto-RGD), which binds tightly to a receptor - ávâ3 integrin -expressed in some tumors, especially in the blood vessels. As well as a role in angiogenesis, integrins are important in holding tumor cells together and connecting them with the extracellular matrix; what happens when these interactions break down is one of the keys to determining how tumors metastasize.

Haubner and colleagues’ work, in a mouse with human melanoma and in a small study of patients with tumors including melanoma, suggests that the marker is truly reflecting the in vivo level of the integrin. Hence the marker could be used to identify tumors that express this marker, assess the degree of new vessel formation in tumors, and help in the planning and monitoring of anti-angiogenic therapies which target this integrin.

Paul Ocampo | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>