Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let’s Stick Together - A Protein Protects Chromosome Bonds

30.03.2005


The protein Mnd2 inhibits premature separation of chromosomes during the formation of gametes. The now published discovery of this regulatory function may help to understand the origin of some common congenital chromosome defects. The project of a team of the University of Vienna funded by the Austrian Science Fund (FWF) contributes to the Campus Vienna Biocenter maintaining a top-level position in the field of cell division research.



During the division of somatic cells (mitosis) newly duplicated chromosomes (sister chromatids) separate and segregate to opposite daughter cells. The cell division, which leads to the formation of gametes (egg and sperm cells), serves a different purpose. In this cell division called meiosis, the two complete sets of chromosomes (maternal and paternal ones) in each body cell are reduced to a single one.

Prof. Franz Klein and his colleague, Ph.D. student Alexandra Penkner from the Department of Chromosome Biology of the Max Perutz Laboratories at the Campus Vienna Biocenter, have now published results on an important regulation of this process in the journal CELL. These findings show that the premature segregation of sister chromatids with lethal consequences are inhibited by a protein named Mnd2.


Sisters Stick Together

The research carried out on the model organism Saccharomyces cerevisiae (yeast) is explained by Prof. Klein, "Until they are separated, the sister chromatids are linked by a protein ring called cohesin. This linkage ensures their correct segregation to the daughter cells later on. We have now discovered an important role of the protein Mnd2 in stabilising this arrangement up to the right moment in the cell division."

The command for opening the cohesin rings, which initiates the division, comes via the anaphase promoting complex (APC/C). Klein explains, "While we worked on Mnd2, colleagues in the USA and Germany isolated Mnd2 as one of 13 subunits of the APC/C. However, the important role of Mnd2 was not revealed. Because only during meiosis, when the gametes are created, does it become essential."

In initial experiments, Ms. Penkner observed defects in meiotic chromosome structure, DNA breaks and premature separation of sister chromatides in cells lacking Mnd2. Such abnormalities may be caused by an irregular activity of the APC/C. To verify this idea, Ms. Penkner conducted clever experiments in which she inactivated the APC/C in yeast cells in addition to Mnd2. Indeed without a functional APC/C, Mnd2 was not anymore required to prevent chromosomal defects.

Braking for Chromosomes

Additional experiments explained why the described damages occurred exclusively during meiosis. An activator of the APC/C (Ama1), which only appears during meiosis, requires Mnd2. It is Ama1, which activates the APC/C too early in the absence of Mnd2 and thus opens the cohesin rings prematurely, that leads to chromosome damage and finally to the death of the cell.

Chromosome damage in meiosis can have lasting consequences. Well-known examples are Down Syndrome patients, for whom the proper division of two chromosomes did not occur during the meiosis of one parent. The fusion of two germ cells, one of which carried two copies of chromosomes 21, gave rise to body cells carrying three chromosomes 21.

The work of Prof. Klein follows an earlier joint study with a team led by Prof. Kim Nasmyth from the Research Institute of Molecular Pathology (IMP) at the Campus Vienna Biocenter. In that research, the role of over 300 proteins during meiosis was analysed. Consequently, Mnd2 was recognised as important meiotic function, which could now be worked out with support from the FWF.

Prof. Franz Klein | alfa
Further information:
http://www.fwf.ac.at/en/press/gametes.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>