Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let’s Stick Together - A Protein Protects Chromosome Bonds

30.03.2005


The protein Mnd2 inhibits premature separation of chromosomes during the formation of gametes. The now published discovery of this regulatory function may help to understand the origin of some common congenital chromosome defects. The project of a team of the University of Vienna funded by the Austrian Science Fund (FWF) contributes to the Campus Vienna Biocenter maintaining a top-level position in the field of cell division research.



During the division of somatic cells (mitosis) newly duplicated chromosomes (sister chromatids) separate and segregate to opposite daughter cells. The cell division, which leads to the formation of gametes (egg and sperm cells), serves a different purpose. In this cell division called meiosis, the two complete sets of chromosomes (maternal and paternal ones) in each body cell are reduced to a single one.

Prof. Franz Klein and his colleague, Ph.D. student Alexandra Penkner from the Department of Chromosome Biology of the Max Perutz Laboratories at the Campus Vienna Biocenter, have now published results on an important regulation of this process in the journal CELL. These findings show that the premature segregation of sister chromatids with lethal consequences are inhibited by a protein named Mnd2.


Sisters Stick Together

The research carried out on the model organism Saccharomyces cerevisiae (yeast) is explained by Prof. Klein, "Until they are separated, the sister chromatids are linked by a protein ring called cohesin. This linkage ensures their correct segregation to the daughter cells later on. We have now discovered an important role of the protein Mnd2 in stabilising this arrangement up to the right moment in the cell division."

The command for opening the cohesin rings, which initiates the division, comes via the anaphase promoting complex (APC/C). Klein explains, "While we worked on Mnd2, colleagues in the USA and Germany isolated Mnd2 as one of 13 subunits of the APC/C. However, the important role of Mnd2 was not revealed. Because only during meiosis, when the gametes are created, does it become essential."

In initial experiments, Ms. Penkner observed defects in meiotic chromosome structure, DNA breaks and premature separation of sister chromatides in cells lacking Mnd2. Such abnormalities may be caused by an irregular activity of the APC/C. To verify this idea, Ms. Penkner conducted clever experiments in which she inactivated the APC/C in yeast cells in addition to Mnd2. Indeed without a functional APC/C, Mnd2 was not anymore required to prevent chromosomal defects.

Braking for Chromosomes

Additional experiments explained why the described damages occurred exclusively during meiosis. An activator of the APC/C (Ama1), which only appears during meiosis, requires Mnd2. It is Ama1, which activates the APC/C too early in the absence of Mnd2 and thus opens the cohesin rings prematurely, that leads to chromosome damage and finally to the death of the cell.

Chromosome damage in meiosis can have lasting consequences. Well-known examples are Down Syndrome patients, for whom the proper division of two chromosomes did not occur during the meiosis of one parent. The fusion of two germ cells, one of which carried two copies of chromosomes 21, gave rise to body cells carrying three chromosomes 21.

The work of Prof. Klein follows an earlier joint study with a team led by Prof. Kim Nasmyth from the Research Institute of Molecular Pathology (IMP) at the Campus Vienna Biocenter. In that research, the role of over 300 proteins during meiosis was analysed. Consequently, Mnd2 was recognised as important meiotic function, which could now be worked out with support from the FWF.

Prof. Franz Klein | alfa
Further information:
http://www.fwf.ac.at/en/press/gametes.html

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>