Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vital step in cellular migration described by UCSD medical researchers

29.03.2005


A vital molecular step in cell migration, the movement of cells within the body during growth, tissue repair and the body’s immune response to invading pathogens, has been demonstrated by researchers in the University of California, San Diego (UCSD) School of Medicine. Published in the March 27 online edition of Nature Cell Biology and the journal’s upcoming April print edition, the study describes how a the interaction of alpha4 integrin adhesion receptor with a protein called paxillin creates directional movement of a cell by inhibiting a protein called Rac.



"Understanding how this protein contributes to directional movement of a cell provides a new insight into cell migration and ultimately could lead to therapeutic interventions in autoimmune diseases such as multiple sclerosis and Crohn’s disease," said the paper’s first author Naoyuki Nishiya, Ph.D., a postgraduate researcher in the lab of senior author Mark Ginsberg, M.D., UCSD professor of medicine. "Since cell migration plays an important role in the immune response, as leukocytes move toward targets, a therapy that stops that movement could potentially help in autoimmune disorders where the body’s immune system incorrectly attacks the body’s own tissue."

From the genesis of human life to birth and beyond, cell migration is a complex, extremely important process that is not completely understood by researchers. In order to move, a cell must be polarized so that the molecular processes at the front end and back end are different, leading only to forward movement. One of the first steps in cell migration is the initiation of activity by Rac that extends protrusions out of the cell. These protrusions serve as tractor sites for migration as the cell moves toward its intended target. If Rac were active throughout the cell, it would extend protrusions in all directions, in essence keeping the cell in one place.


Until now, researchers have had limited understanding of the molecular mechanism that inhibits Rac activity in the back of the cell, to maintain directional movement. In laboratory experiments with human and animal cells, the UCSD team discovered that the alpha4 integrin recruits enzymes that block Rac activity only at the rear of a crawling cell.

The scientists noted that alpha4 integrins are widely expressed in neural crest cells, immune system leukocytes (such as T cells), striated and smooth muscle, and neurons. For this reason, they believe the mechanism used by alpha4 integrins to localize Rac activity may participate in a wide variety of cell migratory and pathfinding events.

In addition to Nishiya and Ginsberg, additional authors were William B. Kiosses, Ph.D., The Scripps Research Institute, La Jolla, California; and Jaewon Han, Ph.D., UCSD Department of Medicine. The study was funded by the National Institutes of Health.

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>