Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vital step in cellular migration described by UCSD medical researchers

29.03.2005


A vital molecular step in cell migration, the movement of cells within the body during growth, tissue repair and the body’s immune response to invading pathogens, has been demonstrated by researchers in the University of California, San Diego (UCSD) School of Medicine. Published in the March 27 online edition of Nature Cell Biology and the journal’s upcoming April print edition, the study describes how a the interaction of alpha4 integrin adhesion receptor with a protein called paxillin creates directional movement of a cell by inhibiting a protein called Rac.



"Understanding how this protein contributes to directional movement of a cell provides a new insight into cell migration and ultimately could lead to therapeutic interventions in autoimmune diseases such as multiple sclerosis and Crohn’s disease," said the paper’s first author Naoyuki Nishiya, Ph.D., a postgraduate researcher in the lab of senior author Mark Ginsberg, M.D., UCSD professor of medicine. "Since cell migration plays an important role in the immune response, as leukocytes move toward targets, a therapy that stops that movement could potentially help in autoimmune disorders where the body’s immune system incorrectly attacks the body’s own tissue."

From the genesis of human life to birth and beyond, cell migration is a complex, extremely important process that is not completely understood by researchers. In order to move, a cell must be polarized so that the molecular processes at the front end and back end are different, leading only to forward movement. One of the first steps in cell migration is the initiation of activity by Rac that extends protrusions out of the cell. These protrusions serve as tractor sites for migration as the cell moves toward its intended target. If Rac were active throughout the cell, it would extend protrusions in all directions, in essence keeping the cell in one place.


Until now, researchers have had limited understanding of the molecular mechanism that inhibits Rac activity in the back of the cell, to maintain directional movement. In laboratory experiments with human and animal cells, the UCSD team discovered that the alpha4 integrin recruits enzymes that block Rac activity only at the rear of a crawling cell.

The scientists noted that alpha4 integrins are widely expressed in neural crest cells, immune system leukocytes (such as T cells), striated and smooth muscle, and neurons. For this reason, they believe the mechanism used by alpha4 integrins to localize Rac activity may participate in a wide variety of cell migratory and pathfinding events.

In addition to Nishiya and Ginsberg, additional authors were William B. Kiosses, Ph.D., The Scripps Research Institute, La Jolla, California; and Jaewon Han, Ph.D., UCSD Department of Medicine. The study was funded by the National Institutes of Health.

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>