Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where’s Waldo’s DNA? New NIST SRM joins search

29.03.2005


A new reference standard from the National Institute of Standards and Technology (NIST) may help genetics labs develop improved methods of searching for a mutant needle in a DNA haystack.



A single DNA molecule carrying part of a person’s genetic code is a chain of basic chemical units called nucleotides. The number of nucleotides can range from about 16,500 in mitochondrial DNA (mtDNA) to several million in nuclear DNA. A key mutation in a DNA strand may involve only a single nucleotide and yet cause serious health effects.

Accurate analysis of mitochondrial DNA (mtDNA), either for forensic identification or for studying genetic-based diseases, often hinges on the ability to detect such mutations that occur only infrequently, even in the same individual. Unlike the cell’s nuclear DNA, a person’s mtDNA is often heteroplasmic--a mix of a dominant DNA sequence with fewer mutated sequences that differ from the dominant version by one or more nucleotides. There are hundreds or thousands of mitochondria in cells, and the exact percentage of the minority mtDNA in the mix can vary dramatically in an individual from tissue to tissue and even from cell to cell. In general, it can be very difficult to identify variants that make up less than 20 percent of the sample unless you already know they are there.


Researchers face a similar problem of detecting low-frequency variants when analyzing pooled samples of nuclear DNA from a population of individuals in the hope of identifying specific mutations responsible for genetic diseases.

To help the research community develop and test more sensitive techniques for detecting low-frequency mutations in heteroplasmic DNA, NIST researchers have developed a new Standard Reference Material, SRM 2394, "Heteroplasmic Mitochondrial DNA Mutation Detection Standard." The new material is a set of mixtures, at 10 different certified concentrations, of two DNA fragments that differ from each other at only one position.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>