Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Where’s Waldo’s DNA? New NIST SRM joins search


A new reference standard from the National Institute of Standards and Technology (NIST) may help genetics labs develop improved methods of searching for a mutant needle in a DNA haystack.

A single DNA molecule carrying part of a person’s genetic code is a chain of basic chemical units called nucleotides. The number of nucleotides can range from about 16,500 in mitochondrial DNA (mtDNA) to several million in nuclear DNA. A key mutation in a DNA strand may involve only a single nucleotide and yet cause serious health effects.

Accurate analysis of mitochondrial DNA (mtDNA), either for forensic identification or for studying genetic-based diseases, often hinges on the ability to detect such mutations that occur only infrequently, even in the same individual. Unlike the cell’s nuclear DNA, a person’s mtDNA is often heteroplasmic--a mix of a dominant DNA sequence with fewer mutated sequences that differ from the dominant version by one or more nucleotides. There are hundreds or thousands of mitochondria in cells, and the exact percentage of the minority mtDNA in the mix can vary dramatically in an individual from tissue to tissue and even from cell to cell. In general, it can be very difficult to identify variants that make up less than 20 percent of the sample unless you already know they are there.

Researchers face a similar problem of detecting low-frequency variants when analyzing pooled samples of nuclear DNA from a population of individuals in the hope of identifying specific mutations responsible for genetic diseases.

To help the research community develop and test more sensitive techniques for detecting low-frequency mutations in heteroplasmic DNA, NIST researchers have developed a new Standard Reference Material, SRM 2394, "Heteroplasmic Mitochondrial DNA Mutation Detection Standard." The new material is a set of mixtures, at 10 different certified concentrations, of two DNA fragments that differ from each other at only one position.

Michael Baum | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>