Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice with defective sperm offer clues to infertility in men

21.03.2005


Findings may yield methods for improving fertility as well as developing male contraceptives



For 40 percent of the estimated six million American couples battling infertility, the problem lies with the man. But help may be on the way. New research in mice by scientists at Rockefeller University and the Population Council sheds light on the causes behind male infertility. The findings, reported in the March issue of Developmental Cell, also include potential targets for developing a reversible male contraceptive.

"The sperm from these mice have problems similar to many defects seen in human sperm that contribute to infertility," says Hermann Steller, Ph.D., head of the Strang Laboratory of Apoptosis and Cancer Biology at Rockefeller. "We have found an event in the maturation of sperm that is extremely sensitive, and thus would be a good target for both improving fertility and quality of sperm for men who are infertile, and for the inhibition of fertility using a male contraceptive pill."


Led by first author Holger Kissel, Ph.D., a postdoctoral researcher in Steller’s laboratory, the scientists created a mouse missing a gene called Septin 4; male mice that lack this gene are sterile. While these mice produce the same volume and number of sperm as normal mice, the sperm from the mutant mice is unable to fertilize eggs. The sperm has several defects, including severely bent tails and large droplets of cytoplasm at the area of the cell that surrounds the nucleus. These defects would not normally appear in fertile sperm. The appearance of the mutant mouse sperm is very similar to a human condition known as "droplet sperm."

"The majority of sperm that even a fertile man makes appears abnormal," says Kissel. "The sperm defects we are seeing in the mutant mice are probably an enhanced phenomenon that occurs in normal, healthy mice as well."

This research follows previous work by Steller’s lab showing that caspases, known as death enzymes, are needed by fruit flies to make healthy sperm. Instead of killing the cell, as would normally occur, the caspases remove excess cytoplasm from sperm, helping to give them their nice streamlined shape. The new data indicates that the same events occur in mammalian sperm.

"Caspases are needed for the elimination of the majority of the cytoplasm and organelles to make mature sperm," says Steller. "Rather than having death of the whole cell, there is death of only part of the cell. This is clear evidence that this process is conserved from fruit flies to mammals."

The Septin 4 gene, which is missing in the mice with defective sperm, makes both the Septin 4 protein and a protein called ARTS. This second protein is important for activating the death enzymes. The Septin 4 protein, part of a family of proteins first discovered in yeast, is important for making large cytoplasmic scaffolds, similar to construction scaffolding, in cells where proteins can assemble. The scaffolds provide a framework in the cell that helps to compartmentalize different proteins in the cell.

"The Septin 4 protein is normally found in a structure called the annulus in the sperm," says Steller. "The annulus was predicted to be a way to make different compartments in the sperm, and the mutant mice completely lack an annulus. If you normally have to keep all of the proteins in the right compartment, messing that up leads to a number of problems with the sperm, including bent tails and an inability to swim."

Co-author Gary Hunnicutt, Ph.D., the senior collaborative scientist at the Population Council, studies surface compartmentalization and function of sperm.

"Sperm, unlike other cells in the body, must respond and react to a host of different environments in both the male and female reproductive tracts," says Hunnicutt. "Yet they do this without making any new proteins. Instead, they appear to change their functions by rearranging the molecules on their surfaces. The annulus has been thought to act as a gatekeeper that separates two areas of the sperm tail. Studying sperm from mice lacking Septin 4 allows us to finally ask if this is really the case, and the findings will advance our understanding of how sperm become cells capable of fertilization."

Research on the roles of both the ARTS and Septin 4 proteins in sperm maturation may further our understanding of male infertility and potentially improve the fertility and quality of sperm in infertile men. Also, these proteins are attractive targets for male contraceptive drugs, because while the sperm are still produced in the mutant mice, they are unable to fertilize an egg.

"There are not many mutations that cause complete sterility without affecting the anatomy of the testis, as with our mouse," says Kissel. "The Septin 4 and ARTS proteins are great targets because interfering with them could accomplish inhibition of fertility without any negative side effects."

"This is a really great starting point," says Steller. "We were originally interested in the cell death aspects of these proteins, but the mouse has opened up many other nice opportunities-including insights into human sterility-that we are currently pursuing."

Contributing authors include Maria Magdalena Georgescu, formerly at Rockefeller and now at the University of Texas M.D. Anderson Cancer Center; Sarit Larisch, a scientist visiting Rockefeller from the Rambam Medical Center in Israel; and Katia Manova at Memorial Sloan-Kettering Cancer Center.

Kristine A. Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>