Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice with defective sperm offer clues to infertility in men

21.03.2005


Findings may yield methods for improving fertility as well as developing male contraceptives



For 40 percent of the estimated six million American couples battling infertility, the problem lies with the man. But help may be on the way. New research in mice by scientists at Rockefeller University and the Population Council sheds light on the causes behind male infertility. The findings, reported in the March issue of Developmental Cell, also include potential targets for developing a reversible male contraceptive.

"The sperm from these mice have problems similar to many defects seen in human sperm that contribute to infertility," says Hermann Steller, Ph.D., head of the Strang Laboratory of Apoptosis and Cancer Biology at Rockefeller. "We have found an event in the maturation of sperm that is extremely sensitive, and thus would be a good target for both improving fertility and quality of sperm for men who are infertile, and for the inhibition of fertility using a male contraceptive pill."


Led by first author Holger Kissel, Ph.D., a postdoctoral researcher in Steller’s laboratory, the scientists created a mouse missing a gene called Septin 4; male mice that lack this gene are sterile. While these mice produce the same volume and number of sperm as normal mice, the sperm from the mutant mice is unable to fertilize eggs. The sperm has several defects, including severely bent tails and large droplets of cytoplasm at the area of the cell that surrounds the nucleus. These defects would not normally appear in fertile sperm. The appearance of the mutant mouse sperm is very similar to a human condition known as "droplet sperm."

"The majority of sperm that even a fertile man makes appears abnormal," says Kissel. "The sperm defects we are seeing in the mutant mice are probably an enhanced phenomenon that occurs in normal, healthy mice as well."

This research follows previous work by Steller’s lab showing that caspases, known as death enzymes, are needed by fruit flies to make healthy sperm. Instead of killing the cell, as would normally occur, the caspases remove excess cytoplasm from sperm, helping to give them their nice streamlined shape. The new data indicates that the same events occur in mammalian sperm.

"Caspases are needed for the elimination of the majority of the cytoplasm and organelles to make mature sperm," says Steller. "Rather than having death of the whole cell, there is death of only part of the cell. This is clear evidence that this process is conserved from fruit flies to mammals."

The Septin 4 gene, which is missing in the mice with defective sperm, makes both the Septin 4 protein and a protein called ARTS. This second protein is important for activating the death enzymes. The Septin 4 protein, part of a family of proteins first discovered in yeast, is important for making large cytoplasmic scaffolds, similar to construction scaffolding, in cells where proteins can assemble. The scaffolds provide a framework in the cell that helps to compartmentalize different proteins in the cell.

"The Septin 4 protein is normally found in a structure called the annulus in the sperm," says Steller. "The annulus was predicted to be a way to make different compartments in the sperm, and the mutant mice completely lack an annulus. If you normally have to keep all of the proteins in the right compartment, messing that up leads to a number of problems with the sperm, including bent tails and an inability to swim."

Co-author Gary Hunnicutt, Ph.D., the senior collaborative scientist at the Population Council, studies surface compartmentalization and function of sperm.

"Sperm, unlike other cells in the body, must respond and react to a host of different environments in both the male and female reproductive tracts," says Hunnicutt. "Yet they do this without making any new proteins. Instead, they appear to change their functions by rearranging the molecules on their surfaces. The annulus has been thought to act as a gatekeeper that separates two areas of the sperm tail. Studying sperm from mice lacking Septin 4 allows us to finally ask if this is really the case, and the findings will advance our understanding of how sperm become cells capable of fertilization."

Research on the roles of both the ARTS and Septin 4 proteins in sperm maturation may further our understanding of male infertility and potentially improve the fertility and quality of sperm in infertile men. Also, these proteins are attractive targets for male contraceptive drugs, because while the sperm are still produced in the mutant mice, they are unable to fertilize an egg.

"There are not many mutations that cause complete sterility without affecting the anatomy of the testis, as with our mouse," says Kissel. "The Septin 4 and ARTS proteins are great targets because interfering with them could accomplish inhibition of fertility without any negative side effects."

"This is a really great starting point," says Steller. "We were originally interested in the cell death aspects of these proteins, but the mouse has opened up many other nice opportunities-including insights into human sterility-that we are currently pursuing."

Contributing authors include Maria Magdalena Georgescu, formerly at Rockefeller and now at the University of Texas M.D. Anderson Cancer Center; Sarit Larisch, a scientist visiting Rockefeller from the Rambam Medical Center in Israel; and Katia Manova at Memorial Sloan-Kettering Cancer Center.

Kristine A. Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>