Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harnessing microbes, one by one, to build a better nanoworld

18.03.2005


Taking a new approach to the painstaking assembly of nanometer-sized machines, a team of scientists at the University of Wisconsin-Madison has successfully used single bacterial cells to make tiny bio-electronic circuits.

The work is important because it has the potential to make building the atomic-scale machines of the nanotechnologist far easier. It also may be the basis for a new class of biological sensors capable of near-instantaneous detection of dangerous biological agents such as anthrax.

The approach, reported here today (March 17, 2005) at a meeting of the American Chemical Society, suggests that microbes can serve as forms for complicated nanoscale structures, perhaps obviating, in part, the need for the tedious and time-consuming construction of devices at the smallest scale.



The work is also scheduled to appear in the April issue of the journal Nano Letters.

"One of the great challenges of nanotechnology remains the assembly of nanoscale objects into more complex systems," says Robert Hamers, a UW-Madison professor of chemistry and the senior author of the new reports. "We think that bacteria and other small biological systems can be used as templates for fabricating even more complex systems."

Toward that end, Hamers and his UW-Madison colleagues Joseph Beck, Lu Shang and Matthew Marcus, have developed a system in which living microbes, notably bacteria, are guided, one at a time, down a channel to a pair of electrodes barely a germ’s length apart. Slipping between the electrodes, the microbes, in effect, become electrical "junctions," giving researchers the ability to capture, interrogate and release bacterial cells one by one. Built into a sensor, such a capability would enable real-time detection of dangerous biological agents, including anthrax and other microbial pathogens. "The results here are significant because while there has been much attention paid to the ability to manipulate nanoscale objects such as nanotubes and nanowires across electrical contacts, for many applications the use of bacterial cells affords a number of potential advantages," Hamers says.

For example, capitalizing on the complex topography of the bacterial cell surface and microbial interactions with antibodies, scientists could potentially construct much more complex nanoscale structures through the natural ability of cells to dock with different kinds of molecules. Such a potential, Hamers argues, would be superior to the painstaking manipulation of individual nanosized components, such as the microscopic wires and tubes that comprise the raw materials of nanotechnology. "We spend a lot of time making tiny little nanowires and things of that sort, and then we try to direct them in place, but it is very hard," says Hamers. "However, bacteria and other biological systems can be thought of as nature’s nanowires that can be easily grown and manipulated."

In the series of experiments underpinning the new Wisconsin work, the group showed that it is possible to capture cells along an electrode and then direct them down a narrow channel that acts as a conveyor. Small gaps in the electrical contacts along the conveyor serve as traps that can hold single bacterial cells while their electrical properties are measured. Once the microbial interrogation is completed, the live cell can be released. "You can measure and release them at your leisure," explains Beck, the lead author of the Nano Letters paper and a UW-Madison postdoctoral fellow.

He says the chemicals naturally expressed on the surface of the bacterium could be wired in a way that would be the basis for a real-time biological sensor, a device that could be seeded in airports, stadiums, railway stations, skyscrapers, mailrooms and other public areas to sniff for dangerous biological agents that might be used in a bioterror event.

The device could be constructed, according to Beck, utilizing the natural features bacteria and other microbes use to sense their environments. The wired bacterial cells, coupled with modern microelectronics, would have the ability not only to detect dangerous agents (anthrax spores, for example) but they then could sound the alarm and call for help. "You could even engineer bacteria to have different surface molecules that you could capitalize on," says Beck.

For instance, it may be possible, the Wisconsin scientists say, to attach microscopic gold particles to the shell of the bacterium, making it more like a nanoscale gold wire.

Hamers believes the new work could be the basis for bringing nanotechnology and biology together in unprecedented ways.

Moreover, the ability to routinely and easily capture and analyze individual microbes will have implications for conventional biotechnology as well. For example, chemical modifications to the electrode traps might make it easier for scientists to retrieve specified cells from a complex mixture.

The work by Hamers’ group was funded by the National Science Foundation. The Wisconsin Alumni Research Foundation, a private, nonprofit organization that manages UW-Madison intellectual property, has applied for patents for the technology.

The paper on this research, ANYL 424, will be presented at 2:45 p.m., Thursday, March 17, at the San Diego Convention Center, Room 27A, during a symposium titled "Bioanalytical Techniques for Detection of Bacteria, Toxins and Proteins.

Robert J. Hamers | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>