Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Duke chemists isolating individual molecules of toxic protein in Alzheimer’s, Parkinson’s disease


To understand the formation of the brain-clogging deposits that cause such disorders as Alzheimer’s and Parkinson’s diseases, Duke University chemists have figured out how to capture and "micromanipulate" the single molecular building blocks of the deposits.

Their aim is to understand the detailed assembly process for the toxic protein called amyloid plaque. Such basic understanding, they said, could lead to approaches to preventing plaque formation.

The researchers led by Boris Akhremitchev are using the infinitesimal tip of a customized atomic force microscope (AFM) to capture, isolate and study single molecules, called monomers, that are the building blocks of the toxic protein polymers known as amyloid fibrils. Atomic force microscopes use a sharp microscopic tip to image surfaces and detect energy differences by mechanically probing molecular surfaces.

In a poster presentation at the American Chemical Society’s annual meeting, the researchers will describe the first biophysical analysis of interactions between monomers that form the amyloid fibrils associated with Parkinson’s disease.

This presentation will include studies by Chad Ray, a graduate student in Akhremitchev’s research group, that clarify the nature of binding forces between amyloid molecules. The poster session will take place March 16, 2005, 7:30 - 10 p.m. Pacific Standard Time, in Hall D of the San Diego Convention Center.

This work was funded by the Camille and Henry Dreyfus Foundation and by Duke University.

It has been difficult to study the chemistry of formation of these fibrils within the brains of humans and other animals, said Akhremitchev, who is an assistant professor of chemistry.

In the brain, "monomers of all kinds are suspended in a soup in equilibrium," he said. Given that the components of amyloid fibrils measure only billionths of a meter and are floating in a disordered mix, "the initial stages of amyloid aggregation are not fully understood," he said.

"When you start a normal reaction, molecules are free in solution so they interact with each other randomly," Akhremitchev said. "If you want to dissect the process, you would rather want to study interactions individually."

Thus, the Duke chemists capture individual monomers at the end of long chained polyethylene glycol molecules. They then attach one such tethered monomer to a microscope slide and the other to the AFM microscope tip. They can then bring the isolated and suspended molecules together to study how and whether they interact.

The Duke researchers study these interactions by retracting the tip of their AFM, which can measure changes in force at the atomic scale. Pulling back the tip can induce a measurable tug on the chemical bonds that hold together the two elevated monomers.

By pulling on such bonds, the Duke scientists can deduce how much energy was required to bring the molecules together. Then, using their knowledge of protein chemistry, they can develop hypotheses about how those particular monomers might, or might not, be involved in the evolution of fibrils, They can thus develop a better understanding of amyloid aggregation.

The scientists are also seeking the precise point during fibril formation when interactions between monomers become irreversible. Defining that point is important because "the fibrils are virtually indestructible once formed," he said.

"How all these monomers interact to form these amyloid fibrils is just not known at this point," said Akhremitchev. "And that is why it is such a great challenge. That’s what we want to learn."

Monte Basgall | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>