Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke chemists isolating individual molecules of toxic protein in Alzheimer’s, Parkinson’s disease

17.03.2005


To understand the formation of the brain-clogging deposits that cause such disorders as Alzheimer’s and Parkinson’s diseases, Duke University chemists have figured out how to capture and "micromanipulate" the single molecular building blocks of the deposits.



Their aim is to understand the detailed assembly process for the toxic protein called amyloid plaque. Such basic understanding, they said, could lead to approaches to preventing plaque formation.

The researchers led by Boris Akhremitchev are using the infinitesimal tip of a customized atomic force microscope (AFM) to capture, isolate and study single molecules, called monomers, that are the building blocks of the toxic protein polymers known as amyloid fibrils. Atomic force microscopes use a sharp microscopic tip to image surfaces and detect energy differences by mechanically probing molecular surfaces.


In a poster presentation at the American Chemical Society’s annual meeting, the researchers will describe the first biophysical analysis of interactions between monomers that form the amyloid fibrils associated with Parkinson’s disease.

This presentation will include studies by Chad Ray, a graduate student in Akhremitchev’s research group, that clarify the nature of binding forces between amyloid molecules. The poster session will take place March 16, 2005, 7:30 - 10 p.m. Pacific Standard Time, in Hall D of the San Diego Convention Center.

This work was funded by the Camille and Henry Dreyfus Foundation and by Duke University.

It has been difficult to study the chemistry of formation of these fibrils within the brains of humans and other animals, said Akhremitchev, who is an assistant professor of chemistry.

In the brain, "monomers of all kinds are suspended in a soup in equilibrium," he said. Given that the components of amyloid fibrils measure only billionths of a meter and are floating in a disordered mix, "the initial stages of amyloid aggregation are not fully understood," he said.

"When you start a normal reaction, molecules are free in solution so they interact with each other randomly," Akhremitchev said. "If you want to dissect the process, you would rather want to study interactions individually."

Thus, the Duke chemists capture individual monomers at the end of long chained polyethylene glycol molecules. They then attach one such tethered monomer to a microscope slide and the other to the AFM microscope tip. They can then bring the isolated and suspended molecules together to study how and whether they interact.

The Duke researchers study these interactions by retracting the tip of their AFM, which can measure changes in force at the atomic scale. Pulling back the tip can induce a measurable tug on the chemical bonds that hold together the two elevated monomers.

By pulling on such bonds, the Duke scientists can deduce how much energy was required to bring the molecules together. Then, using their knowledge of protein chemistry, they can develop hypotheses about how those particular monomers might, or might not, be involved in the evolution of fibrils, They can thus develop a better understanding of amyloid aggregation.

The scientists are also seeking the precise point during fibril formation when interactions between monomers become irreversible. Defining that point is important because "the fibrils are virtually indestructible once formed," he said.

"How all these monomers interact to form these amyloid fibrils is just not known at this point," said Akhremitchev. "And that is why it is such a great challenge. That’s what we want to learn."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>