Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temple University researchers develop new targeted cancer therapy

15.03.2005


Temple University researchers have developed a new drug that halts cancer cell division, instigating tumor death. The drug works by interfering with the activity of a gene called Plk1 and is now in phase I clinical trials for human cancer therapy. Their research is published in the March issue of Cancer Cell.



Plk1 is one of several molecules that play a critical role in the spread of cancer. Previous studies have found higher levels of Plk1 in cancer tumors and in patients with poorer survival rates. When Plk1 activity was blocked, cancer cells could not divide and tumors could not survive.

Lead by Prem Reddy, Ph.D., professor of biochemistry and director of the Fels Institute for Cancer Research at Temple University School of Medicine, the Temple team sought out a new compound that would target and block Plk1. They developed and tested ON01910, a small molecule that inhibits Plk1 activity, on 94 different human cancers.


"We found that ON01910 was a potent inhibitor of human tumor growth and also worked well with several existing cancer drugs, often inducing complete regression of tumors. Someday it might work either as a single drug or in combination with other drugs," said Reddy.

Johns Hopkins Medicine and Mt. Sinai Medical Center are currently conducting the first clinical trial of ON01910 in patients with advanced and metastatic cancers. The studies will evaluate data from up to 56 patients.

ON01910 is known as a targeted therapy, a new area of cancer drug research and development. As the name suggests, such therapies target molecules that are critical to a tumor’s survival. Targeted therapies block the molecules from functioning, thereby preventing tumors from surviving.

On the unique actions of ON01910, Reddy said, "Our drug stops tumor cells from reaching normal cells three ways. First, it blocks invasion, next it blocks angiogenesis and finally, it induces tumor cell death. It also appears to be very safe."

Other research team members are Kiranmai Gumireddy1, M.V. Ramana Reddy, Stephen C. Cosenza1, R. Boomi Nathan, Stacey J. Baker, Nabisa Papathi1, Jiandong Jiang, and James Holland.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>