Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temple University researchers develop new targeted cancer therapy

15.03.2005


Temple University researchers have developed a new drug that halts cancer cell division, instigating tumor death. The drug works by interfering with the activity of a gene called Plk1 and is now in phase I clinical trials for human cancer therapy. Their research is published in the March issue of Cancer Cell.



Plk1 is one of several molecules that play a critical role in the spread of cancer. Previous studies have found higher levels of Plk1 in cancer tumors and in patients with poorer survival rates. When Plk1 activity was blocked, cancer cells could not divide and tumors could not survive.

Lead by Prem Reddy, Ph.D., professor of biochemistry and director of the Fels Institute for Cancer Research at Temple University School of Medicine, the Temple team sought out a new compound that would target and block Plk1. They developed and tested ON01910, a small molecule that inhibits Plk1 activity, on 94 different human cancers.


"We found that ON01910 was a potent inhibitor of human tumor growth and also worked well with several existing cancer drugs, often inducing complete regression of tumors. Someday it might work either as a single drug or in combination with other drugs," said Reddy.

Johns Hopkins Medicine and Mt. Sinai Medical Center are currently conducting the first clinical trial of ON01910 in patients with advanced and metastatic cancers. The studies will evaluate data from up to 56 patients.

ON01910 is known as a targeted therapy, a new area of cancer drug research and development. As the name suggests, such therapies target molecules that are critical to a tumor’s survival. Targeted therapies block the molecules from functioning, thereby preventing tumors from surviving.

On the unique actions of ON01910, Reddy said, "Our drug stops tumor cells from reaching normal cells three ways. First, it blocks invasion, next it blocks angiogenesis and finally, it induces tumor cell death. It also appears to be very safe."

Other research team members are Kiranmai Gumireddy1, M.V. Ramana Reddy, Stephen C. Cosenza1, R. Boomi Nathan, Stacey J. Baker, Nabisa Papathi1, Jiandong Jiang, and James Holland.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water world

20.11.2017 | Life Sciences

Less is more to produce top-notch 2D materials

20.11.2017 | Materials Sciences

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>