Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temple University researchers develop new targeted cancer therapy

15.03.2005


Temple University researchers have developed a new drug that halts cancer cell division, instigating tumor death. The drug works by interfering with the activity of a gene called Plk1 and is now in phase I clinical trials for human cancer therapy. Their research is published in the March issue of Cancer Cell.



Plk1 is one of several molecules that play a critical role in the spread of cancer. Previous studies have found higher levels of Plk1 in cancer tumors and in patients with poorer survival rates. When Plk1 activity was blocked, cancer cells could not divide and tumors could not survive.

Lead by Prem Reddy, Ph.D., professor of biochemistry and director of the Fels Institute for Cancer Research at Temple University School of Medicine, the Temple team sought out a new compound that would target and block Plk1. They developed and tested ON01910, a small molecule that inhibits Plk1 activity, on 94 different human cancers.


"We found that ON01910 was a potent inhibitor of human tumor growth and also worked well with several existing cancer drugs, often inducing complete regression of tumors. Someday it might work either as a single drug or in combination with other drugs," said Reddy.

Johns Hopkins Medicine and Mt. Sinai Medical Center are currently conducting the first clinical trial of ON01910 in patients with advanced and metastatic cancers. The studies will evaluate data from up to 56 patients.

ON01910 is known as a targeted therapy, a new area of cancer drug research and development. As the name suggests, such therapies target molecules that are critical to a tumor’s survival. Targeted therapies block the molecules from functioning, thereby preventing tumors from surviving.

On the unique actions of ON01910, Reddy said, "Our drug stops tumor cells from reaching normal cells three ways. First, it blocks invasion, next it blocks angiogenesis and finally, it induces tumor cell death. It also appears to be very safe."

Other research team members are Kiranmai Gumireddy1, M.V. Ramana Reddy, Stephen C. Cosenza1, R. Boomi Nathan, Stacey J. Baker, Nabisa Papathi1, Jiandong Jiang, and James Holland.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>