Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New class of tuberculosis-fighting antibiotics suggested by biochemical-pathway study

11.03.2005


A worldwide health problem, tuberculosis kills more people than any other bacterial infection. The World Health Organization estimates that two billion people are infected with TB, and that two million people die each year from the disease.



However, due to multi-drug resistance and a protracted medication regimen, it is extremely difficult to treat. Hence, there is still a great deal of interest in developing new anti-tubercular drugs. Researchers at the University of Pennsylvania School of Medicine have identified a biochemical target that could lead to a new class of antibiotics to fight TB. They report their findings in this week’s online edition of the Proceedings of the National Academy of Sciences.

In a proof-of-principle study, Harvey Rubin, MD, PhD, Professor of Medicine, Division of Infectious Diseases, and colleagues were able to stop the bacteria from multiplying by inhibiting the first step in a common biochemical pathway. This pathway is responsible for making the energy molecules all cells need to survive. First author Edward Weinstein, an MD/PhD student, Rubin, and colleagues characterized the pathway and showed that an important enzyme in it is a key target for anti-TB agents.


The pathway, explains Rubin, is like a series of links in a chain, with enzymes facilitating reactions along the way. "We discovered that if you inhibit the very first enzyme in the chain, you inhibit everything else downstream and eventually the bacteria die," he explains. The research group tested phenothiazine, a drug used in the past to treat schizophrenia, in cultures of Mycobacterium tuberculosis, the bacterium that causes TB. They found that phenothiazines killed the bacterium in culture and suppressed its growth in mice with acute TB infection.

While the effect on the growth of TB in mice was small, it suggested that a valid target was identified. The research group went on to show that the enzyme disabled by the phenothiazines is called type II NADH dehydrogenase and is a unique and important antimicrobial target. "What we have now is a new target in TB," says Rubin. "We’ve been able to find at least the beginnings of a class of compounds that we can start working with and that we know is biochemically active against the TB bacteria in culture and in small animals."

Is it a new drug for tuberculosis? Not yet, cautions Rubin. It’s premature to say that this class of drugs will cure TB, but it does represent the start of basic research towards that, he concludes. Next steps include more investigations on inhibitors of the NADH biochemical pathway in TB, and the development of high-throughput screens to find better and safer inhibitors of type II NADH dehydrogenase.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>