Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene responsible for severe congenital skin disease, Harlequin Ichthyosis, identified by Queen Mary team

11.03.2005


The genetic cause of the devastating skin disease Harlequin Ichthyosis has been discovered by a team at Barts and the London, Queen Mary’s School of Medicine and Dentistry.



In a paper to be published online in April in the American Journal of Human Genetics, Professor David Kelsell, of Queen Mary’s Centre for Cutaneous Research, outlines the recent breakthrough. Harlequin Ichthyosis (HI) is a rare, life threatening condition, where babies are born covered in a thick ‘coat of armour’. The skin dries out to form hard diamond shaped plaques, severely restricting their movement.

Historically, these babies usually die within two days of birth, due to feeding problems, bacterial infection and/or respiratory diseases. But a number of patients now survive, thanks to the wider availability of neonatal care, and developments in treatment. Prof Kelsell said: “The search for the genetic cause of HI has taken more than seven years, with groups in the UK, Japan and US finding the classical linkage analysis techniques unsuccessful. This is largely down to the lethal nature of the condition and the small size of families with the condition. Our breakthrough came from applying SNP array technology.”


The relatively new SNP or ‘Snip’ array technology has made searching for disease genes a much quicker and cheaper process - one which enabled Kelsell and his team to identify the HI gene in a matter of weeks.

SNPs, or single nucleotide polymorphisms, are common but minute variations in the DNA sequence; they occur when just one of the four letters that make up the code swaps places. Each array is the size of a fingernail, and contains over 10,000 of these different SNPs. Identifying an SNP which is consistently inherited with a disease can help point researchers to the ‘linked’ gene that may be ultimately responsible for the condition.

Professor Kelsell’s team looked at individuals from twelve families who are affected with HI; three from the USA; seven from the UK and two from Italy – all from diverse ethnic backgrounds. Using SNP array technology, they were able to pinpoint the area of code responsible for HI, and discovered mutations in the ABCA12 gene that maps in this area, in 11 of the 12 patients studied. Harlequin Ichthyosis affects a number of families in the UK; four children affected by HI, and Professor Kelsell’s discovery, will be the subject of an ITV documentary; Real Lives: the Harlequin Sisters, to be broadcast later this year.

HI is thought to be caused by a defect in the way lipids (fats) are transported and discharged into the top layers of the skin. Normally, tiny spherical grains called lamellar granules migrate upwards through the skin, depositing lipids into the intercellular spaces of the skin’s uppermost layer. These lipids act as a protective barrier against bacteria and infection.

In patients with HI, these lamellar granules are formed abnormally; the ABCA12 gene may play a critical role in their formation, explaining the defects in the epidermal barrier seen in this disorder.

Until now, pre-natal screening tests for HI were often unreliable and inconclusive, involving risky, invasive procedures such as foetal skin biopsies. Professor Kelsell added: “By identifying ABCA12, our team has provided the molecular clue towards understanding the numerous biological abnormalities seen in HI skin, and established the means for early prenatal DNA diagnosis of HI.” The team’s next step will be to investigate the role of ABCA12 in the skin with financial support from BDF: Newlife.

Sian Wherrett | alfa
Further information:
http://www.ajhg.org
http://www.qmul.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>