Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene responsible for severe congenital skin disease, Harlequin Ichthyosis, identified by Queen Mary team


The genetic cause of the devastating skin disease Harlequin Ichthyosis has been discovered by a team at Barts and the London, Queen Mary’s School of Medicine and Dentistry.

In a paper to be published online in April in the American Journal of Human Genetics, Professor David Kelsell, of Queen Mary’s Centre for Cutaneous Research, outlines the recent breakthrough. Harlequin Ichthyosis (HI) is a rare, life threatening condition, where babies are born covered in a thick ‘coat of armour’. The skin dries out to form hard diamond shaped plaques, severely restricting their movement.

Historically, these babies usually die within two days of birth, due to feeding problems, bacterial infection and/or respiratory diseases. But a number of patients now survive, thanks to the wider availability of neonatal care, and developments in treatment. Prof Kelsell said: “The search for the genetic cause of HI has taken more than seven years, with groups in the UK, Japan and US finding the classical linkage analysis techniques unsuccessful. This is largely down to the lethal nature of the condition and the small size of families with the condition. Our breakthrough came from applying SNP array technology.”

The relatively new SNP or ‘Snip’ array technology has made searching for disease genes a much quicker and cheaper process - one which enabled Kelsell and his team to identify the HI gene in a matter of weeks.

SNPs, or single nucleotide polymorphisms, are common but minute variations in the DNA sequence; they occur when just one of the four letters that make up the code swaps places. Each array is the size of a fingernail, and contains over 10,000 of these different SNPs. Identifying an SNP which is consistently inherited with a disease can help point researchers to the ‘linked’ gene that may be ultimately responsible for the condition.

Professor Kelsell’s team looked at individuals from twelve families who are affected with HI; three from the USA; seven from the UK and two from Italy – all from diverse ethnic backgrounds. Using SNP array technology, they were able to pinpoint the area of code responsible for HI, and discovered mutations in the ABCA12 gene that maps in this area, in 11 of the 12 patients studied. Harlequin Ichthyosis affects a number of families in the UK; four children affected by HI, and Professor Kelsell’s discovery, will be the subject of an ITV documentary; Real Lives: the Harlequin Sisters, to be broadcast later this year.

HI is thought to be caused by a defect in the way lipids (fats) are transported and discharged into the top layers of the skin. Normally, tiny spherical grains called lamellar granules migrate upwards through the skin, depositing lipids into the intercellular spaces of the skin’s uppermost layer. These lipids act as a protective barrier against bacteria and infection.

In patients with HI, these lamellar granules are formed abnormally; the ABCA12 gene may play a critical role in their formation, explaining the defects in the epidermal barrier seen in this disorder.

Until now, pre-natal screening tests for HI were often unreliable and inconclusive, involving risky, invasive procedures such as foetal skin biopsies. Professor Kelsell added: “By identifying ABCA12, our team has provided the molecular clue towards understanding the numerous biological abnormalities seen in HI skin, and established the means for early prenatal DNA diagnosis of HI.” The team’s next step will be to investigate the role of ABCA12 in the skin with financial support from BDF: Newlife.

Sian Wherrett | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>