Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast network prevents damage by oxygen radicals

04.03.2005


Reactive oxygen species (ROS), or ’oxygen radicals’, have been identified as major contributors to signs of premature aging, increased cancer prevalence linked to inflammation-associated syndromes and a variety of human diseases. Now scientists at the University of California, San Diego Branch of the Ludwig Institute for Cancer Research (LICR) have identified a key network of DNA repair and cell cycle control genes in yeast that prevents the deleterious effects of ROS.



"DNA repair and cell cycle control mechanisms are important guardians against cancerous changes in human cells," says Dr. Richard Kolodner, LICR Member and senior author of the study. "However, the effects of ROS on these cellular responses have not been well characterized. We’ve now identified a group of genes that cooperate to suppress DNA mutations and the genome rearrangements that are the hallmarks of cancer cells that occur in response to ROS."

Dr. Kolodner and lead author, Meng-Er Huang, generated various yeast strains each with a mutation in the TSA1 gene, which results in increased production of ROS, plus a mutation in one or more genes involved in DNA repair or cell cycle control. Cell survival and accumulation of DNA mutations and gross chromosomal rearrangements in each strain were then analysed to identify genes that cooperate to prevent the deleterious effects of ROS and promote normal cell survival.


"These results suggest that endogenous ROS-induced genome instability may contribute to cancer progression," says Dr. Kolodner, professor of medicine with UCSD School of Medicine and member of the Rebecca and John Moores UCSD Cancer Center. "And increased ROS is almost certainly more harmful in cells with acquired mutations in other genes in the network. However the connections we’ve found might point to new strategies, like dietary supplements, that will alleviate some of the clinical symptoms of human diseases associated with genetic deficiencies of DNA damage responses."

Sarah L. White | EurekAlert!
Further information:
http://wwww.licr.org

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>