Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast network prevents damage by oxygen radicals

04.03.2005


Reactive oxygen species (ROS), or ’oxygen radicals’, have been identified as major contributors to signs of premature aging, increased cancer prevalence linked to inflammation-associated syndromes and a variety of human diseases. Now scientists at the University of California, San Diego Branch of the Ludwig Institute for Cancer Research (LICR) have identified a key network of DNA repair and cell cycle control genes in yeast that prevents the deleterious effects of ROS.



"DNA repair and cell cycle control mechanisms are important guardians against cancerous changes in human cells," says Dr. Richard Kolodner, LICR Member and senior author of the study. "However, the effects of ROS on these cellular responses have not been well characterized. We’ve now identified a group of genes that cooperate to suppress DNA mutations and the genome rearrangements that are the hallmarks of cancer cells that occur in response to ROS."

Dr. Kolodner and lead author, Meng-Er Huang, generated various yeast strains each with a mutation in the TSA1 gene, which results in increased production of ROS, plus a mutation in one or more genes involved in DNA repair or cell cycle control. Cell survival and accumulation of DNA mutations and gross chromosomal rearrangements in each strain were then analysed to identify genes that cooperate to prevent the deleterious effects of ROS and promote normal cell survival.


"These results suggest that endogenous ROS-induced genome instability may contribute to cancer progression," says Dr. Kolodner, professor of medicine with UCSD School of Medicine and member of the Rebecca and John Moores UCSD Cancer Center. "And increased ROS is almost certainly more harmful in cells with acquired mutations in other genes in the network. However the connections we’ve found might point to new strategies, like dietary supplements, that will alleviate some of the clinical symptoms of human diseases associated with genetic deficiencies of DNA damage responses."

Sarah L. White | EurekAlert!
Further information:
http://wwww.licr.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>