Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover how substitutions are made for injured genes


If there were no bench for second-string players on a football team, who would substitute for tired or injured team members? A team of Weizmann Institute scientists has found that, if the team were made up of genes, they might pull athletes who can play a little football in a pinch from nearby basketball or rugby teams. Their findings were published in the March issue of Nature Genetics.

Dr. Yitzhak (Tzachi) Pilpel and graduate students Ran Kafri and Arren Bar-Even, of the Institute’s Molecular Genetics Department, knew from previous studies that up to 80% of the genes in yeast, a common model for genetics research, have potential stand-ins in various spots around the genome. Though not identical to the original gene, they make a protein that is sufficiently similar to the one it produces to pass muster. Many scientists believed that both genetic substitutes and the main gene were expressed simultaneously so as to supply the organism with needed quantities of proteins. But Pilpel and his team showed that, in fact, when the original gene is up and running, the others are off playing at their own sports. Only when that gene is damaged or deleted, do the substitutes get called onto the "football field," where they play as they can.

They reached this conclusion after analyzing data from some 40 studies of yeast cells by different research teams around the world. Using bioinformatics techniques (advanced data processing of biological information) to identify patterns and trends in the enormous flux of data supplied by these studies and by the sequencing of the yeast genome, they proposed a "football coach" mechanism that knows when to call up the substitute players.

This "coach" is a feedback mechanism based on the raw materials genes use to make proteins. When a gene is working at full capacity, it will use up most of the raw material available to it, leaving little in its original state. But, if it’s not making sufficient quantities of protein, or producing defective proteins that are missing bits, a relatively larger amount of the raw material will be left over. Raw material that is sitting around activates a special set of proteins called transcription factors, whose job is to turn on genes. The transcription factors then bind to, and activate the substitute genes.

Why have genes to make proteins similar enough to substitute for each other, but dissimilar enough to do it imperfectly? Pilpel’s group proposed that the small variations between exchangeable genes, such as differences in the conditions that cause them to be activated, impart to each a unique function. These differences in function make them sufficiently vital to be preserved by evolution, yet allow them, when necessary, to step in for a gene on a different team as a substitute player.

Alex Smith | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>