Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how substitutions are made for injured genes

03.03.2005


If there were no bench for second-string players on a football team, who would substitute for tired or injured team members? A team of Weizmann Institute scientists has found that, if the team were made up of genes, they might pull athletes who can play a little football in a pinch from nearby basketball or rugby teams. Their findings were published in the March issue of Nature Genetics.

Dr. Yitzhak (Tzachi) Pilpel and graduate students Ran Kafri and Arren Bar-Even, of the Institute’s Molecular Genetics Department, knew from previous studies that up to 80% of the genes in yeast, a common model for genetics research, have potential stand-ins in various spots around the genome. Though not identical to the original gene, they make a protein that is sufficiently similar to the one it produces to pass muster. Many scientists believed that both genetic substitutes and the main gene were expressed simultaneously so as to supply the organism with needed quantities of proteins. But Pilpel and his team showed that, in fact, when the original gene is up and running, the others are off playing at their own sports. Only when that gene is damaged or deleted, do the substitutes get called onto the "football field," where they play as they can.

They reached this conclusion after analyzing data from some 40 studies of yeast cells by different research teams around the world. Using bioinformatics techniques (advanced data processing of biological information) to identify patterns and trends in the enormous flux of data supplied by these studies and by the sequencing of the yeast genome, they proposed a "football coach" mechanism that knows when to call up the substitute players.



This "coach" is a feedback mechanism based on the raw materials genes use to make proteins. When a gene is working at full capacity, it will use up most of the raw material available to it, leaving little in its original state. But, if it’s not making sufficient quantities of protein, or producing defective proteins that are missing bits, a relatively larger amount of the raw material will be left over. Raw material that is sitting around activates a special set of proteins called transcription factors, whose job is to turn on genes. The transcription factors then bind to, and activate the substitute genes.

Why have genes to make proteins similar enough to substitute for each other, but dissimilar enough to do it imperfectly? Pilpel’s group proposed that the small variations between exchangeable genes, such as differences in the conditions that cause them to be activated, impart to each a unique function. These differences in function make them sufficiently vital to be preserved by evolution, yet allow them, when necessary, to step in for a gene on a different team as a substitute player.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/
http://www.jgordonassociates.com

More articles from Life Sciences:

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

nachricht When fish swim in the holodeck
22.08.2017 | University of Vienna

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>