Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Termites feed through good vibrations

23.02.2005


Discovery that termites use vibrations to choose the wood they eat may provide opportunities to new methods of reducing infestations in homes and also may provide insights into the "cocktail party effect" of signal processing - how to ignore most noise but have some signals that trigger attention - that may prove useful in artificial intelligence.




CSIRO entomologist Theo Evans says laboratory experiments have found that termites use their ability to detect vibrations to determine which food source is most suitable. The termites can also detect how the vibrations are made. This ability could be likened to a form of sonar.

Dr Evans says different termite species are known to prefer eating particular sizes of wood; certain drywood termites prefer small blocks, presumably to avoid competition. With Professor Joseph Lai and his students from the University of New South Wales at the Australian Defence Force, Dr Evans investigated how the blind insects measured pieces of wood.


They recorded the vibrations of worker drywood termites as they fed on large and small wood blocks. Dr Evans then broadcast the recorded vibrations made by termites from the large blocks into small blocks and found that the termites switched their preference to the large blocks. Prof Lai created an artificial signal similar to that made by the termites chewing the large block, which Dr Evans broadcast into small blocks and the scientists found that the termites had no preference for either large or small blocks. Broadcasting static into small blocks did not affect termite choice, showing that the termites were not interested in random noise.

These results show two responses by the termites: one to block size and a second to signal source. The artificial signal mimicked the characteristic frequency of the wooden block, so the termites were tricked into believing that a small block with the artificial signal was the same size as a large block; thus no preference was observed. However, the signal from the termites feeding on large blocks had this characteristic frequency plus other signals indicating the presence of other termites in that "large block", so they chose to feed on the large block without termites. Thus the termites showed that they have the "cocktail party effect".

This social information had another important effect: limiting reproduction potential. Most termite workers are sterile; they don’t breed. However, in drywood termites, workers can become fertile and develop into breeders when they are isolated from their colony. Few workers developed into breeders in the experiments when they were broadcast the termite sourced signals, whereas many workers developed into breeders when artificial signals were broadcast, or when no signals were broadcast.

Scientists are hoping to find ways to interfere with the termites’ ability to select wood in order to reduce the economic impact of termite damage. "There is a common perception that termites are voracious and indiscriminate eaters, consuming all the wood that they find", Dr Evans says. "But the reality is that termites are selective feeders and choose their food very carefully. The palatability of the wood species and hardness is important as are defensive chemicals made by the plant. But our work shows that this is not the only method of assessment. There are many accounts of termites not consuming a piece of palatable wood."

Listen to termites walking and chewing pine http://www.csiro.au/audio/termite_Feb05.mp3 [mp3 file, 1 Mb, 59 sec]

Termite pictures:

http://www.scienceimage.csiro.au/index.cfm?event=site.image.detail&id=2583

http://www.scienceimage.csiro.au/index.cfm?event=site.image.detail&id=2584

Further Information:

Dr Theo Evans, CSIRO Entomology, Termite Group 02 6246 4195

Professor Joseph Lai 02 6268 8272

Media Assistance:

Julie Carter, CSIRO Entomology 02 6246 4040 or 0439 033 011

Geraldine Capp | CSIRO - News
Further information:
http://www.csiro.au

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>