Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Blinding’ an insect’s sense of smell may be the best repellent

22.02.2005


Don’t stop and smell the roses: "blinding" an insect’s sense of smell may be the best repellent, according to research by Rockefeller University scientists "Pest insects have a profound negative impact on agriculture and human health," says Rockefeller University’s Leslie Vosshall, Ph.D. "They are responsible for global losses of crops and stored agricultural products as well as the spread of many diseases."

In the heated battle between people and insect pests, Vosshall and colleagues, in collaboration with the biotech company Sentigen Biosciences, Inc., report in the February 22nd issue of Current Biology that an understanding of insects’ sense of smell may finally give humans the upper hand.

The researchers studied four very different insect species: a benign insect favored by researchers, the fruit fly, which is attracted to rotting fruit, and three pest insects: the medfly, which is a citrus pest; the corn earworm moth, which damages corn, cotton and tomato crops; and the malaria mosquito, which targets humans. They found that one gene, shown to be responsible for the sense of smell in fruit flies, has the same function in these pest insects, which are separated by over 250 million years evolution



"While all these insects have sensitive olfactory systems, they all have very different smell preferences," says Vosshall, head of the Laboratory of Neurogenetics and Behavior. "Yet this odorant receptor is highly conserved across all of these different species."

Vosshall’s laboratory previously published research demonstrating that out of 62 odorant receptors in the fruit fly, only a single one, named Or83b, was essential the sense of smell in fruit flies. When they removed the gene, the mutant flies couldn’t smell a wide variety of different odors. The scientists then examined the fruit fly’s 61 other odorant receptors and found that the proteins never made it to the ends of the olfactory neurons, called dendrites, where they would normally interact with the different incoming smells.

"The odors that interest flies in the outside world float around in the air until they contact tiny hairs on the fly’s antennae," Vosshall says. "The odors pass through tiny holes in the hairs where they bind the odorant receptors at the ends of nerve cells. But in the mutant flies those odorant receptors fail to be delivered to the nerve endings, or dendrites. As a result, the flies are blind to smells.

Odorant receptor proteins, even within one species, are very different from one another. Researchers think that each of these receptors binds a different set of smell molecules, helping the insect recognize a large number of odors in the environment. When comparing the receptors across species there are groups of receptors that are only found in mosquitoes and then different groups specific to fruit flies. These differences most likely tailor each insect’s sense of smell to its preferred plant or animal target. For fruit flies, these receptors may help the fly target rotting fruit, and in malaria mosquitoes, they are probably specific for human body odor. But Or83b is highly similar among insects, regardless of their particular smell preferences.

Vosshall and colleagues placed Or83b from the different species into mutant fruit flies that were missing their own Or83b gene to determine if the function of the protein was also conserved. They found that even though the genes were from very different species, these genes from other insects restored the fly’s sense of smell.

Then they looked closer at the olfactory nerve cells. While in mutant flies the other odorant receptors were never transported to the dendrite, the receptors in flies making Or83b from the different species were all correctly located at the ends of the olfactory neurons.

Though it remains to be shown that the different Or83b genes are similarly essential for the sense of smell in each respective insect species, Vosshall is confident that this information may provide a starting point for future designs of pesticides and disease-controlling insect repellents.

"Although mosquitoes and flies have very different opinions about odors," Vosshall says, "this gene functionally substitutes. Insects are very smart and have evolved a lot, but from the point of view of vulnerability, this makes them very vulnerable to strategies that would block their sense of smell. If we could use this to chemically interrupt the transport of the odorant receptors, we could make mosquitoes ’blind’ to humans. That in turn would be a good way to prevent disease transmission."

First author Walton D. Jones is a Biomedical Fellow in the Laboratory of Neurogenetics and Behavior at Rockefeller University. Contributing authors from Sentigen Biosciences include Thuy-Ai T. Nguyen, Brian Kloss and Kevin J. Lee.

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>