Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide mouse study yields link to human leukemia

22.02.2005


Thanks to a handful of very special mice, scientists have discovered a new tumor suppressor gene and a unique chemical signature implicated in the development of human leukemia, findings that open up a “treasure box” of opportunity and possibility, study authors say.



Researchers in The Ohio State University Comprehensive Cancer Center bred a type of mouse that develops acute lymphoblastic leukemia (ALL). The mouse first goes through a pre-leukemic stage marked by rapidly expanding T cells and natural killer cells, both major components of the immune system.

In comparing the mice in the pre-leukemic stage and those with ALL with normal mice, researchers found that methylation, a chemical process that adds methyl molecules to DNA, silenced a number of genes – but only in the mice with full-blown ALL. Further tests revealed that the methylation pattern in the mice with leukemia is strikingly similar to the pattern of methylation in human leukemia.


In the process, the researchers also identified a new gene that when methylated, appears to interrupt normal cell death, a process called apoptosis. “It’s given us a whole new way to look at and possibly treat leukemia,” says Michael Caligiuri, director of the OSU Comprehensive Cancer Center (OSUCCC) and senior co-author of the study. “It’s also validated our mouse model as a good predictor of what happens in the development of human disease,” he added.

The findings appear in Nature Genetics online at http://www.nature.com/ng/.

“This is the first time anyone has examined methylation in leukemia on a genome-wide basis in a mouse, and the findings offer important implications for patient care, since we know that methylation, which alters gene function, can be reversed,” says Christoph Plass, senior co-author and a member of the OSUCCC’s Molecular Biology and Cancer Genetics and Experimental Therapeutics Programs.

While it was Caligiuri’s laboratory that designed the mouse model, it was Plass who supervised the methylation studies. He and his colleagues used a system called Restriction Landmark Genome Sequencing (RLGS) to compare methylation patterns among the three groups of mice – a method of using enzymes and gel electrophoresis to map tiny bits of DNA on a grid. The stretches of DNA, referred to as fragments, show up as smudgy blobs on a test film. If a fragment is dark and definite, it is not methylated. If, on the other hand, it loses at least 30 percent of its intensity, it is regarded as methylated.

In the study, the research team tested 2447 fragments in each animal. They found anywhere from 45 to 209 (.8 percent to 8.5 percent) of the fragments methylated in the mice with cancer, but only one or two methylated fragments in the other mice. “Interestingly, that same range of methylated fragments is exactly what we find in human leukemia, too,” says Caligiuri, “so that gives added merit to our mouse model as an investigative tool.” Using data from the methylation studies, Caligiuri and Plass were able to identify a particular stretch of DNA, called Id4, as a tumor suppressor gene.

Tumor suppressor genes help control cancer by identifying and getting rid of defective cells before they have a chance to mature and divide. When tumor suppressor genes lose that ability – as they can if they are silenced through methylation or some other process, it gives cancer a chance to establish a foothold and spread.

Caligiuri says much more work needs to be done, but adds that the identification of Id4 as a likely tumor suppressor gene gives clinicians another possible target for intervention. “We already have a drug, decitabine, that we know can reverse the effects of methylation,” says Plass. “We are just beginning to figure out how it best works in humans, but simply knowing that we have a new target that may be meaningful in treating leukemia is a big step in the right direction.”

Grants from the National Cancer Institute and the Leukemia and Lymphoma Society supported the research.

Additional co-authors from Ohio State include Li Yu, Chunhui Liu, Jeff Vandeusen, Brian Becknell, Zunyun Dai, Yue-Zhong Wu, Aparna Raval, Te-Hui Liu, Wei Ding, Charlene Mao, Shujun Liu, Laura Smith, Stephen Lee, Guido Marcucci and John Byrd. Laura Rassenti, from the University of California , San Diego , also contributed to the project.

The Ohio State University Comprehensive Cancer Center is a network of interdisciplinary research programs with over 200 investigators in 13 colleges across the OSU campus, the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and Children’s Hospital, in Columbus . OSUCCC members conduct research on the prevention, detection, diagnosis and treatment of cancer, generating over $95 million annually in external funding.

Michelle Gailiun | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>