Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots That Act Like Rats

16.02.2005


Robots that act like rat pups can tell us something about the behavior of both, according to UC Davis researchers.



Sanjay Joshi, assistant professor of mechanical and aeronautical engineering, and associate professor of psychology Jeffrey Schank have recorded the behavior of rat pups and built rat-like robots with the same basic senses and motor skills to see how behavior can emerge from a simple set of rules.

Seven to 10-day-old rat pups, blind and deaf, do not seem to do a whole lot. Videotaped in a rectangular arena in Schank’s laboratory, they move about until they hit a wall, feel their way along the wall until their nose goes into a corner, then mostly stay put. Because their senses and responses are so limited, pups should be a good starting point for building robots that can do the same thing.


Joshi’s laboratory built foot-long robots with tapered snouts, about the same shape as a rat pup. The robots are ringed by sensors so that they "feel" when they bump into a wall or corner. They are programmed to stay in contact with objects they touch, as rats do.

But when the robotic "rats" were put into a rectangular arena like that used for experiments with real rats, the robots showed a new behavior. They scuttled along the walls and repeatedly bumped into one corner, but favored one wall. Instead of stopping in a corner they kept going, circling the arena. "When we re-analyzed the animal data, we found that the animals were also favoring one wall over another as they bumped around in corners," Joshi said. "The robots showed us what to look for in animal studies."

The wall-following or corner-sticking is emergent behavior, he said. That means it is not written into the computer code, but emerges as a result of the instructions the robot follows as it interacts with the environment at each instant.

The team is also looking at the behavior that emerges when groups of robotic rats interact using different kinds of rules. This should show biologists what the rats may be doing. Understanding the biology of these simple systems might later inform the design of more sophisticated robots, Joshi said.

The work was funded by grants from the National Science Foundation.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>