Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots That Act Like Rats

16.02.2005


Robots that act like rat pups can tell us something about the behavior of both, according to UC Davis researchers.



Sanjay Joshi, assistant professor of mechanical and aeronautical engineering, and associate professor of psychology Jeffrey Schank have recorded the behavior of rat pups and built rat-like robots with the same basic senses and motor skills to see how behavior can emerge from a simple set of rules.

Seven to 10-day-old rat pups, blind and deaf, do not seem to do a whole lot. Videotaped in a rectangular arena in Schank’s laboratory, they move about until they hit a wall, feel their way along the wall until their nose goes into a corner, then mostly stay put. Because their senses and responses are so limited, pups should be a good starting point for building robots that can do the same thing.


Joshi’s laboratory built foot-long robots with tapered snouts, about the same shape as a rat pup. The robots are ringed by sensors so that they "feel" when they bump into a wall or corner. They are programmed to stay in contact with objects they touch, as rats do.

But when the robotic "rats" were put into a rectangular arena like that used for experiments with real rats, the robots showed a new behavior. They scuttled along the walls and repeatedly bumped into one corner, but favored one wall. Instead of stopping in a corner they kept going, circling the arena. "When we re-analyzed the animal data, we found that the animals were also favoring one wall over another as they bumped around in corners," Joshi said. "The robots showed us what to look for in animal studies."

The wall-following or corner-sticking is emergent behavior, he said. That means it is not written into the computer code, but emerges as a result of the instructions the robot follows as it interacts with the environment at each instant.

The team is also looking at the behavior that emerges when groups of robotic rats interact using different kinds of rules. This should show biologists what the rats may be doing. Understanding the biology of these simple systems might later inform the design of more sophisticated robots, Joshi said.

The work was funded by grants from the National Science Foundation.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>