Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study Methods, Strains of Pfiesteria Are Both Critical in Determining Organism’s Toxicity


Flagellated sexual cell of one of the two known toxic Pfiesteria species, Pfiesteria shumwayae, that were included in the study. Photo by M. Parrow, Center for Applied Aquatic Ecology.

To gauge the toxicity of Pfiesteria, the important single-celled fish predator that was the culprit behind a number of fish kills and fish diseases along the East Coast in the 1990s, researchers need to both use the proper study methods and recognize that certain populations of the organism, called strains, are toxic while others are not.

That’s the main result of a wide-ranging study by Dr. JoAnn M. Burkholder, professor and director of the Center for Applied Aquatic Ecology at North Carolina State University, along with a dozen colleagues from several universities and research institutions, and a federal laboratory specializing in marine toxins. The research is published online in Proceedings of the National Academy of Sciences.

The study reaffirmed that some strains of the two known Pfiesteria species are toxic, including a strain used by other researchers who had asserted that Pfiesteria can’t make toxin. Burkholder and her colleagues found that toxic Pfiesteria strains can produce toxin in the absence of bacteria or other contaminating microbes, and that small amounts of Pfiesteria can kill fish with toxin. They also showed that toxin from Pfiesteria can cause fish disease and death without Pfiesteria cells having to be present: water that at one time contained Pfiesteria, but was then completely filtered to remove all of the toxic Pfiesteria cells, caused lesions in fish.

Other experiments showed that purified Pfiesteria toxin residue added to cultures of larval fish killed the fish, while control fish without exposure to the toxin remained healthy.

In the study, two basic methods of detecting Pfiesteria toxicity were compared: fish microassays (FMAs) using larval fish, and standardized fish bioassays (SFBs) using juvenile fish. In each method, the scientists tested toxic Pfiesteria strains, known to be toxic from toxin detection tests that were completed by the National Oceanic and Atmospheric Administration’s National Ocean Service in Charleston, S.C. The researchers compared the results from the known toxic strains to tests of a strain of Pfiesteria previously reported as nontoxic, and with controls that included both Pfiesteria strains which did not express toxicity and a related nontoxic, single-celled organism similar to Pfiesteria.

FMAs were used to test larval fish in small containers with and without direct exposure to Pfiesteria. These tests examined whether direct contact with Pfiesteria was needed to cause death, and whether fish could become sick or die without direct contact with Pfiesteria.

FMAs had been proposed by other scientists as useful tests for ruling out the presence of toxic Pfiesteria – if fish don’t die when exposed to water filtered from a Pfiesteria culture, they asserted, then toxic Pfiesteria doesn’t exist. But lack of fish death does not necessarily mean Pfiesteria’s toxin isn’t there. “Unless the water was tested to see if Pfiesteria toxin was present, all that can be said from such a study is that there wasn’t enough toxin present to cause the fish to die,” explained Dr. Andrew Gordon, second author of the paper and a scientist at Old Dominion University. “More sensitive tests for the chemical toxin itself would be needed to say for sure whether toxin was or wasn’t present.”

Burkholder offered this analogy: “If a person drinks a glass of water from a well that sometimes contains arsenic, and the person doesn’t suddenly become very sick or die, would it be correct to say that the water didn’t contain any arsenic? Surely not – such a test wouldn’t be sensitive enough to detect levels of arsenic that were too low to cause sudden illness or death, but still were present, and still harmful. A test to detect arsenic would be needed.”

SFBs were better able to reliably detect actively toxic Pfiesteria than FMAs, Burkholder says, since SFBs were not developed to distinguish between toxicity and physical attack as factors in fish death, but instead designed to detect toxic Pfiesteria strains, which are known to routinely prey upon fish. “SFBs detected actively toxic strains. Those strains were verified as toxic by also actually testing for chemical toxin that they produced,” said Dr. Alan J. Lewitus, a scientist at the University of South Carolina, Georgetown and a co-author of the paper. “Toxin detection tests like the procedures developed by the National Ocean Service should be done along with fish assays to determine whether a toxic strain is present.”

The researchers also wanted to test whether Pfiesteria can produce toxin without help from bacteria and – as is known for other toxic algae – whether bacteria enhance Pfiesteria’s toxicity. Burkholder and her colleagues found that some strains of Pfiesteria were able to make toxin on their own, without bacteria. “However, when bacteria were present, Pfiesteria made more toxin,” noted Dr. Harold Marshall, a scientist at Old Dominion University and a co-author of the paper, “and a lot more toxin was produced when the toxic strains were given live fish.”

The study showed that conclusions about whether a species of algae is toxic should be based on tests of many strains, rather than one or a few, using culture conditions that encourage toxin production. “It’s also important to keep in mind that Pfiesteria changes when it’s cultured, after years of separation from its natural habitat,” Burkholder added. “Many toxic strains of Pfiesteria, like other toxic algae, even lose their ability to keep making toxin, so young cultures should be used as much as possible. This study clearly shows that Pfiesteria has benign strains and toxic strains, just like other toxic algae – it is the norm, not the exception. Research designed in recognition of that fact will make real progress in advancing scientific understanding about Pfiesteria.”

Dr. JoAnn M. Burkholder | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Earlier flowering of modern winter wheat cultivars

20.03.2018 | Agricultural and Forestry Science

Smithsonian researchers name new ocean zone: The rariphotic

20.03.2018 | Life Sciences

Molecular doorstop could be key to new tuberculosis drugs

20.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>