Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic identifies key cellular process in prostate and other cancers

15.02.2005


Mayo Clinic researchers are the first to identify an interaction between two cellular proteins -- Skp2 and FOXO1 -- that is important for the growth and survival of cancer cells. Researchers also show that this interaction can be chemically reversed to stop cancer tumor growth -- a strategy that may lead to new and better cancer treatments.



Their report appears as an electronic advance article of PNAS, the Proceedings of the National Academy of Sciences ( http://www.pnas.org/cgi/reprint/102/5/1649). The research was performed on human cells in the laboratory and was found effective against human cancer cells. Researchers say it will be at least a year before the discovery can be applied in a human clinical trial.

The Findings


For the first time, the Mayo Clinic research group provides laboratory evidence to describe a new mechanism by which cells lose the protection of tumor suppressors -- and therefore become vulnerable to cancerous cell growth. In particular, they show that Skp2 is the cellular player that interacts with FOXO1 by tagging it for destruction. This degradation of FOXO1 by high levels of Skp2, in turn, abolishes the ability of FOXO1 to suppress tumors. The result of their experiment indicates that human prostate cancer grows without the protection of the tumor suppressor protein FOXO1. Importantly, they also show that this loss of function can be reversed -- even in the presence of high levels of Skp2, by using chemicals that inhibit protein destruction, and thus block Skp2’s action against FOXO1.

Significance of the Finding

"The major finding of our studies is that the tumor suppression function of FOXO1 is abolished due to Skp2-mediated protein degradation," says Haojie Huang, Ph.D., the urology researcher who performed the study. Co-investigator Donald J. Tindall, Ph.D., adds, "We’ve discovered a viable therapeutic target in human cancers, especially those with high levels of Skp2."

The Mayo Clinic researchers’ findings suggest a promising new treatment target at which drug designers can aim new therapies for prostate cancer, as well as a number of other human cancers in which elevated levels of Skp2 have already been documented. These include cancers of the breast, lymphatic leukemia, small cell lung cancer and certain cancers of the mouth and colorectal cancer.

About Prostate Cancer

Prostate cancer is the second most common cause of cancer in men (skin cancer is first) and the second leading cause of cancer death in American men, exceeded only by lung cancer. In 2005, the American Cancer Society estimates 232,000 new cases will be diagnosed. While one in six men will be diagnosed with prostate cancer in his lifetime, only one in 33 will die of it. Because of the widespread disability and death that prostate cancer causes, finding new strategies to develop better treatments is an important public health goal.

Background Biology

The Mayo Clinic researchers wanted to understand the relationship between a group of proteins known as tumor suppressors that belong to the FOXO1 family, and the Skp2 protein. When tumor suppressors fail, the result is abnormal cell growth that can eventually transform healthy cells into cancerous cells. In particular, the Mayo Clinic team wanted to find out what disables FOXO1 tumor suppressor, and how it works -- in hopes of reversing the process to find a new cancer therapy strategy.

The Experiment

The Mayo Clinic research team knew from previous research:

  • FOXO1 possesses tumor suppressor functions. Its tumor suppression works two ways: by curbing cell reproduction and by inducing cells to kill themselves -- especially cancer cells.
  • Some tumor suppressors lose their effectiveness through a means known as the "ubiquitin pathway." This pathway is a cellular strategy for attaching an identifying marker to the tumor suppressor that targets it for destruction.
  • Skp2 is known to target several tumor suppressors for destruction.
  • FOXO1 is suited to being targeted for destruction via the ubiquitin pathway.

The researchers noted that high levels of Skp2 were associated with low levels of FOXO1 in many human cancer cells, including prostate cancer -- and then combined the lines of evidence outlined above to design experiments to answer the specific question: Do elevated levels of Skp2 drive down and disable FOXO1, thus resulting in loss of its tumor suppression ability? The answer is yes.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>