Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic identifies key cellular process in prostate and other cancers

15.02.2005


Mayo Clinic researchers are the first to identify an interaction between two cellular proteins -- Skp2 and FOXO1 -- that is important for the growth and survival of cancer cells. Researchers also show that this interaction can be chemically reversed to stop cancer tumor growth -- a strategy that may lead to new and better cancer treatments.



Their report appears as an electronic advance article of PNAS, the Proceedings of the National Academy of Sciences ( http://www.pnas.org/cgi/reprint/102/5/1649). The research was performed on human cells in the laboratory and was found effective against human cancer cells. Researchers say it will be at least a year before the discovery can be applied in a human clinical trial.

The Findings


For the first time, the Mayo Clinic research group provides laboratory evidence to describe a new mechanism by which cells lose the protection of tumor suppressors -- and therefore become vulnerable to cancerous cell growth. In particular, they show that Skp2 is the cellular player that interacts with FOXO1 by tagging it for destruction. This degradation of FOXO1 by high levels of Skp2, in turn, abolishes the ability of FOXO1 to suppress tumors. The result of their experiment indicates that human prostate cancer grows without the protection of the tumor suppressor protein FOXO1. Importantly, they also show that this loss of function can be reversed -- even in the presence of high levels of Skp2, by using chemicals that inhibit protein destruction, and thus block Skp2’s action against FOXO1.

Significance of the Finding

"The major finding of our studies is that the tumor suppression function of FOXO1 is abolished due to Skp2-mediated protein degradation," says Haojie Huang, Ph.D., the urology researcher who performed the study. Co-investigator Donald J. Tindall, Ph.D., adds, "We’ve discovered a viable therapeutic target in human cancers, especially those with high levels of Skp2."

The Mayo Clinic researchers’ findings suggest a promising new treatment target at which drug designers can aim new therapies for prostate cancer, as well as a number of other human cancers in which elevated levels of Skp2 have already been documented. These include cancers of the breast, lymphatic leukemia, small cell lung cancer and certain cancers of the mouth and colorectal cancer.

About Prostate Cancer

Prostate cancer is the second most common cause of cancer in men (skin cancer is first) and the second leading cause of cancer death in American men, exceeded only by lung cancer. In 2005, the American Cancer Society estimates 232,000 new cases will be diagnosed. While one in six men will be diagnosed with prostate cancer in his lifetime, only one in 33 will die of it. Because of the widespread disability and death that prostate cancer causes, finding new strategies to develop better treatments is an important public health goal.

Background Biology

The Mayo Clinic researchers wanted to understand the relationship between a group of proteins known as tumor suppressors that belong to the FOXO1 family, and the Skp2 protein. When tumor suppressors fail, the result is abnormal cell growth that can eventually transform healthy cells into cancerous cells. In particular, the Mayo Clinic team wanted to find out what disables FOXO1 tumor suppressor, and how it works -- in hopes of reversing the process to find a new cancer therapy strategy.

The Experiment

The Mayo Clinic research team knew from previous research:

  • FOXO1 possesses tumor suppressor functions. Its tumor suppression works two ways: by curbing cell reproduction and by inducing cells to kill themselves -- especially cancer cells.
  • Some tumor suppressors lose their effectiveness through a means known as the "ubiquitin pathway." This pathway is a cellular strategy for attaching an identifying marker to the tumor suppressor that targets it for destruction.
  • Skp2 is known to target several tumor suppressors for destruction.
  • FOXO1 is suited to being targeted for destruction via the ubiquitin pathway.

The researchers noted that high levels of Skp2 were associated with low levels of FOXO1 in many human cancer cells, including prostate cancer -- and then combined the lines of evidence outlined above to design experiments to answer the specific question: Do elevated levels of Skp2 drive down and disable FOXO1, thus resulting in loss of its tumor suppression ability? The answer is yes.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>