Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic identifies key cellular process in prostate and other cancers

15.02.2005


Mayo Clinic researchers are the first to identify an interaction between two cellular proteins -- Skp2 and FOXO1 -- that is important for the growth and survival of cancer cells. Researchers also show that this interaction can be chemically reversed to stop cancer tumor growth -- a strategy that may lead to new and better cancer treatments.



Their report appears as an electronic advance article of PNAS, the Proceedings of the National Academy of Sciences ( http://www.pnas.org/cgi/reprint/102/5/1649). The research was performed on human cells in the laboratory and was found effective against human cancer cells. Researchers say it will be at least a year before the discovery can be applied in a human clinical trial.

The Findings


For the first time, the Mayo Clinic research group provides laboratory evidence to describe a new mechanism by which cells lose the protection of tumor suppressors -- and therefore become vulnerable to cancerous cell growth. In particular, they show that Skp2 is the cellular player that interacts with FOXO1 by tagging it for destruction. This degradation of FOXO1 by high levels of Skp2, in turn, abolishes the ability of FOXO1 to suppress tumors. The result of their experiment indicates that human prostate cancer grows without the protection of the tumor suppressor protein FOXO1. Importantly, they also show that this loss of function can be reversed -- even in the presence of high levels of Skp2, by using chemicals that inhibit protein destruction, and thus block Skp2’s action against FOXO1.

Significance of the Finding

"The major finding of our studies is that the tumor suppression function of FOXO1 is abolished due to Skp2-mediated protein degradation," says Haojie Huang, Ph.D., the urology researcher who performed the study. Co-investigator Donald J. Tindall, Ph.D., adds, "We’ve discovered a viable therapeutic target in human cancers, especially those with high levels of Skp2."

The Mayo Clinic researchers’ findings suggest a promising new treatment target at which drug designers can aim new therapies for prostate cancer, as well as a number of other human cancers in which elevated levels of Skp2 have already been documented. These include cancers of the breast, lymphatic leukemia, small cell lung cancer and certain cancers of the mouth and colorectal cancer.

About Prostate Cancer

Prostate cancer is the second most common cause of cancer in men (skin cancer is first) and the second leading cause of cancer death in American men, exceeded only by lung cancer. In 2005, the American Cancer Society estimates 232,000 new cases will be diagnosed. While one in six men will be diagnosed with prostate cancer in his lifetime, only one in 33 will die of it. Because of the widespread disability and death that prostate cancer causes, finding new strategies to develop better treatments is an important public health goal.

Background Biology

The Mayo Clinic researchers wanted to understand the relationship between a group of proteins known as tumor suppressors that belong to the FOXO1 family, and the Skp2 protein. When tumor suppressors fail, the result is abnormal cell growth that can eventually transform healthy cells into cancerous cells. In particular, the Mayo Clinic team wanted to find out what disables FOXO1 tumor suppressor, and how it works -- in hopes of reversing the process to find a new cancer therapy strategy.

The Experiment

The Mayo Clinic research team knew from previous research:

  • FOXO1 possesses tumor suppressor functions. Its tumor suppression works two ways: by curbing cell reproduction and by inducing cells to kill themselves -- especially cancer cells.
  • Some tumor suppressors lose their effectiveness through a means known as the "ubiquitin pathway." This pathway is a cellular strategy for attaching an identifying marker to the tumor suppressor that targets it for destruction.
  • Skp2 is known to target several tumor suppressors for destruction.
  • FOXO1 is suited to being targeted for destruction via the ubiquitin pathway.

The researchers noted that high levels of Skp2 were associated with low levels of FOXO1 in many human cancer cells, including prostate cancer -- and then combined the lines of evidence outlined above to design experiments to answer the specific question: Do elevated levels of Skp2 drive down and disable FOXO1, thus resulting in loss of its tumor suppression ability? The answer is yes.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>