Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic identifies key cellular process in prostate and other cancers

15.02.2005


Mayo Clinic researchers are the first to identify an interaction between two cellular proteins -- Skp2 and FOXO1 -- that is important for the growth and survival of cancer cells. Researchers also show that this interaction can be chemically reversed to stop cancer tumor growth -- a strategy that may lead to new and better cancer treatments.



Their report appears as an electronic advance article of PNAS, the Proceedings of the National Academy of Sciences ( http://www.pnas.org/cgi/reprint/102/5/1649). The research was performed on human cells in the laboratory and was found effective against human cancer cells. Researchers say it will be at least a year before the discovery can be applied in a human clinical trial.

The Findings


For the first time, the Mayo Clinic research group provides laboratory evidence to describe a new mechanism by which cells lose the protection of tumor suppressors -- and therefore become vulnerable to cancerous cell growth. In particular, they show that Skp2 is the cellular player that interacts with FOXO1 by tagging it for destruction. This degradation of FOXO1 by high levels of Skp2, in turn, abolishes the ability of FOXO1 to suppress tumors. The result of their experiment indicates that human prostate cancer grows without the protection of the tumor suppressor protein FOXO1. Importantly, they also show that this loss of function can be reversed -- even in the presence of high levels of Skp2, by using chemicals that inhibit protein destruction, and thus block Skp2’s action against FOXO1.

Significance of the Finding

"The major finding of our studies is that the tumor suppression function of FOXO1 is abolished due to Skp2-mediated protein degradation," says Haojie Huang, Ph.D., the urology researcher who performed the study. Co-investigator Donald J. Tindall, Ph.D., adds, "We’ve discovered a viable therapeutic target in human cancers, especially those with high levels of Skp2."

The Mayo Clinic researchers’ findings suggest a promising new treatment target at which drug designers can aim new therapies for prostate cancer, as well as a number of other human cancers in which elevated levels of Skp2 have already been documented. These include cancers of the breast, lymphatic leukemia, small cell lung cancer and certain cancers of the mouth and colorectal cancer.

About Prostate Cancer

Prostate cancer is the second most common cause of cancer in men (skin cancer is first) and the second leading cause of cancer death in American men, exceeded only by lung cancer. In 2005, the American Cancer Society estimates 232,000 new cases will be diagnosed. While one in six men will be diagnosed with prostate cancer in his lifetime, only one in 33 will die of it. Because of the widespread disability and death that prostate cancer causes, finding new strategies to develop better treatments is an important public health goal.

Background Biology

The Mayo Clinic researchers wanted to understand the relationship between a group of proteins known as tumor suppressors that belong to the FOXO1 family, and the Skp2 protein. When tumor suppressors fail, the result is abnormal cell growth that can eventually transform healthy cells into cancerous cells. In particular, the Mayo Clinic team wanted to find out what disables FOXO1 tumor suppressor, and how it works -- in hopes of reversing the process to find a new cancer therapy strategy.

The Experiment

The Mayo Clinic research team knew from previous research:

  • FOXO1 possesses tumor suppressor functions. Its tumor suppression works two ways: by curbing cell reproduction and by inducing cells to kill themselves -- especially cancer cells.
  • Some tumor suppressors lose their effectiveness through a means known as the "ubiquitin pathway." This pathway is a cellular strategy for attaching an identifying marker to the tumor suppressor that targets it for destruction.
  • Skp2 is known to target several tumor suppressors for destruction.
  • FOXO1 is suited to being targeted for destruction via the ubiquitin pathway.

The researchers noted that high levels of Skp2 were associated with low levels of FOXO1 in many human cancer cells, including prostate cancer -- and then combined the lines of evidence outlined above to design experiments to answer the specific question: Do elevated levels of Skp2 drive down and disable FOXO1, thus resulting in loss of its tumor suppression ability? The answer is yes.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>