Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stimuli and desire linked to help stroke patients

15.02.2005


Innovative research restores hand function



Once-paralyzed stroke victims are regaining arm and hand functions thanks to an innovative treatment developed by University of Toronto and Toronto Rehabilitation Institute researchers.

The treatment, outlined in the January Neuromodulation, uses a neuroprosthesis that stimulates muscles with electrical pulses, mimicking the intricate movements along the hand and arm. Simultaneously, the patient concentrates on the movement itself, gradually reconnecting the damaged neuronal connection with the patient’s free will.


"Most therapies do not actively encourage the patient to think about what they’re doing, so there is no connection to the brain to do it," says the paper’s lead author, Professor Milos Popovic of U of T’s Institute of Biomaterials and Biomedical Engineering (IBBME) and the Toronto Rehabilitation Institute. "We hypothesized that the central nervous system has reserves, and even if one part of the brain has been damaged, another reserve can be tapped into to produce movement."

In the study, Popovic and colleagues did a randomized clinical trial on patients who had lost hand and arm movement; 85 per cent of stroke patients never recover movement. The control group received standard physiotherapy and occupational therapy, while the treatment group trained with the neuroprosthesis in addition to the standard therapy. "In the treatment group, we showed that after 16 weeks, we can restore some of their reaching and grasping functions," says Popovic. "This progress did not appear in the control group. It’s all about linking the desire to heal with the stimulated movements."

Popovic soon hopes to find an industry partner to build the technologically advanced neuroprosthesis and to persuade other institutions to use the approach.

Milos Popovic | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>