Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC researchers discover gene that causes heavy metal poisoning

15.02.2005


A team of researchers from the University of Cincinnati (UC) has identified the gene responsible for spreading the poisonous (toxic) effects of cadmium--a finding, say the researchers, that may one day lead to the prevention of cadmium toxicity in humans.



Cadmium--a heavy metal suspected of causing human birth defects, lung cancer and testicular cancer--is found in cigarette smoke, some shellfish and seafood, soil and some plants. It is known to damage the human central nervous system, the kidneys, lungs and developing embryos.

The UC researchers, studying low doses of cadmium in mice, found that the gene Slc39a8 works to transport cadmium to the testes, causing tissue to die.


The study, led by Daniel W. Nebert, MD, professor in UC’s Department of Environmental Health and researcher at the Center for Environmental Genetics, will appear in the March 1, 2005 edition of the Proceedings of the National Academy of Sciences (PNAS).

"We suspect that cadmium at higher doses could be transported to other regions of the body via the Slc39a8 gene or another gene in this family," says Dr. Nebert. "We know that humans carry the same gene and gene family. Thus, we have identified a target that could be used to prevent cadmium’s toxic effects in human populations."

This is especially important, says Dr. Nebert, for many Third World countries. When populations are malnourished or have iron-deficient anemia, the damaging effects of cadmium increase dramatically.

Humans need certain essential metals--including zinc, calcium, magnesium, iron, copper, cobalt and manganese--for normal metabolism and biological processes.

Industrialization, however, has introduced many nonessential heavy metals, such as cadmium, lead, silver, mercury, nickel, arsenic and chromium into the environment.

In the 1920s, UC researchers determined that exposure to lead (a nonessential heavy metal) in gasoline resulted in birth defects, mental retardation, loss of balance and other brain, kidney, liver or lung damage. Since then, there have been many studies on heavy metal toxicity, but until now no study has determined how nonessential heavy metals cause toxicity in humans or other vertebrates.

"We believe that the Slc39a8 gene could be responsible for the transportation not only of cadmium, but also of other nonessential heavy metals such as lead, nickel and mercury," says Dr. Nebert. "Identification and characterization of this gene in mice is a significant breakthrough that will improve our understanding of how heavy metals actually cause toxicity and cancer in humans."

Dama Kimmon | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>