Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists document complex genomic events leading to the birth of new genes

14.02.2005


A team of scientists led by Peer Bork, Ph.D., Senior Bioinformatics Scientist at the European Molecular Biology Laboratory, report today in the journal Genome Research that they have identified a new primate-specific gene family that spans about 10% of human chromosome 2. Comprised of eight family members, the RGP gene cluster may help to explain what sets apart humans and other primates from the rest of the animal kingdom.



Human chromosome 2 has always intrigued primate biologists; it formed from the fusion of two mid-sized ape chromosomes and is the only cytogenetic distinction separating humans from apes. At the molecular level, however, the differences among the species are much more complex.

Bork’s team systematically searched the complete genomic sequences from a broad range of taxa (mouse, rat, roundworm, fruit fly, mosquito, and pufferfish) for single-copy genes that had evolved more than one copy in humans. "Gene duplication is known to play a leading role in evolution for the creation of new genes," explained Francesca Ciccarelli, Ph.D., lead author on the study. The key to this, however, is that the duplicated copies of genes very quickly evolve functions that are significantly different than those of their progenitors.


Natural selection acts on gene duplications, most often by deleting them from the gene pool or by degrading them into non-functional pseudogenes. This is because fully functional duplicated genes, in combination with the corresponding parent gene, produce abnormally abundant quantities of transcripts. This overexpression often alters the fragile molecular balance of gene products on a cellular level, ultimately resulting in deleterious phenotypic consequences. If these duplicated genes acquire new functions, however, they may confer a selective advantage to an organism, leading to the rise of lineage-specific genes over evolutionary time.

Bork’s team identified a total of 22 genes with more than one copy in humans but only a single copy in all other species tested. They then turned their attention to the gene that exhibited the most dramatic of these duplications: RanBP2. RanBP2 is the largest protein found at the nuclear pore complex, helping to regulate nucleic acid and protein traffic in and out of the nucleus. The corresponding gene is present in all sequenced animal genomes but not in other eukaryotes, such as plants or fungi.

The new gene family characterized by Dr. Bork and his colleagues was largely derived from RanPB2, but it had also acquired a domain from the neighboring GCC2 gene, whose protein product contains a GRIP domain that localizes intracellularly to the trans-Golgi network. The new gene family, spanning approximately 10% of human chromosome 2, was named RGP (for RanBP2-like, GRIP domain-containing proteins).

By analyzing the gene order around the RanBP2 and GCC2 genes, Bork’s team was able to reconstruct the genomic rearrangements leading to the formation of the ancestral RGP locus. These events included a combination of duplication, inversion, partial deletion, and domain acquisition, and this was followed by a series of duplications that gave rise to each RGP family member. A total of eight RGP-family genes were identified, all of which are believed to be fully functional.

To demonstrate that RGP-family genes have functions that are significantly divergent from those of RanBP2, Bork and his co-workers examined the subcellular localization of one of the RGP-family isoforms. In contrast to RanBP2, which is found exclusively at the nuclear envelope, this RGP-family protein was detected in discrete cytoplasmic locations, thereby confirming its functional divergence from RanBP2.

Identifying and characterizing genes that are responsible for primate or human distinctiveness has been a major challenge to scientists. However, this work by Bork and his colleagues should further enable studies focused on the molecular basis for species specificity. "A thorough functional characterization of the other 21 new genes we’ve identified in this study would reveal the functionally most relevant areas for primate evolution," Bork says.

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>