Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists document complex genomic events leading to the birth of new genes

14.02.2005


A team of scientists led by Peer Bork, Ph.D., Senior Bioinformatics Scientist at the European Molecular Biology Laboratory, report today in the journal Genome Research that they have identified a new primate-specific gene family that spans about 10% of human chromosome 2. Comprised of eight family members, the RGP gene cluster may help to explain what sets apart humans and other primates from the rest of the animal kingdom.



Human chromosome 2 has always intrigued primate biologists; it formed from the fusion of two mid-sized ape chromosomes and is the only cytogenetic distinction separating humans from apes. At the molecular level, however, the differences among the species are much more complex.

Bork’s team systematically searched the complete genomic sequences from a broad range of taxa (mouse, rat, roundworm, fruit fly, mosquito, and pufferfish) for single-copy genes that had evolved more than one copy in humans. "Gene duplication is known to play a leading role in evolution for the creation of new genes," explained Francesca Ciccarelli, Ph.D., lead author on the study. The key to this, however, is that the duplicated copies of genes very quickly evolve functions that are significantly different than those of their progenitors.


Natural selection acts on gene duplications, most often by deleting them from the gene pool or by degrading them into non-functional pseudogenes. This is because fully functional duplicated genes, in combination with the corresponding parent gene, produce abnormally abundant quantities of transcripts. This overexpression often alters the fragile molecular balance of gene products on a cellular level, ultimately resulting in deleterious phenotypic consequences. If these duplicated genes acquire new functions, however, they may confer a selective advantage to an organism, leading to the rise of lineage-specific genes over evolutionary time.

Bork’s team identified a total of 22 genes with more than one copy in humans but only a single copy in all other species tested. They then turned their attention to the gene that exhibited the most dramatic of these duplications: RanBP2. RanBP2 is the largest protein found at the nuclear pore complex, helping to regulate nucleic acid and protein traffic in and out of the nucleus. The corresponding gene is present in all sequenced animal genomes but not in other eukaryotes, such as plants or fungi.

The new gene family characterized by Dr. Bork and his colleagues was largely derived from RanPB2, but it had also acquired a domain from the neighboring GCC2 gene, whose protein product contains a GRIP domain that localizes intracellularly to the trans-Golgi network. The new gene family, spanning approximately 10% of human chromosome 2, was named RGP (for RanBP2-like, GRIP domain-containing proteins).

By analyzing the gene order around the RanBP2 and GCC2 genes, Bork’s team was able to reconstruct the genomic rearrangements leading to the formation of the ancestral RGP locus. These events included a combination of duplication, inversion, partial deletion, and domain acquisition, and this was followed by a series of duplications that gave rise to each RGP family member. A total of eight RGP-family genes were identified, all of which are believed to be fully functional.

To demonstrate that RGP-family genes have functions that are significantly divergent from those of RanBP2, Bork and his co-workers examined the subcellular localization of one of the RGP-family isoforms. In contrast to RanBP2, which is found exclusively at the nuclear envelope, this RGP-family protein was detected in discrete cytoplasmic locations, thereby confirming its functional divergence from RanBP2.

Identifying and characterizing genes that are responsible for primate or human distinctiveness has been a major challenge to scientists. However, this work by Bork and his colleagues should further enable studies focused on the molecular basis for species specificity. "A thorough functional characterization of the other 21 new genes we’ve identified in this study would reveal the functionally most relevant areas for primate evolution," Bork says.

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>