Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists document complex genomic events leading to the birth of new genes

14.02.2005


A team of scientists led by Peer Bork, Ph.D., Senior Bioinformatics Scientist at the European Molecular Biology Laboratory, report today in the journal Genome Research that they have identified a new primate-specific gene family that spans about 10% of human chromosome 2. Comprised of eight family members, the RGP gene cluster may help to explain what sets apart humans and other primates from the rest of the animal kingdom.



Human chromosome 2 has always intrigued primate biologists; it formed from the fusion of two mid-sized ape chromosomes and is the only cytogenetic distinction separating humans from apes. At the molecular level, however, the differences among the species are much more complex.

Bork’s team systematically searched the complete genomic sequences from a broad range of taxa (mouse, rat, roundworm, fruit fly, mosquito, and pufferfish) for single-copy genes that had evolved more than one copy in humans. "Gene duplication is known to play a leading role in evolution for the creation of new genes," explained Francesca Ciccarelli, Ph.D., lead author on the study. The key to this, however, is that the duplicated copies of genes very quickly evolve functions that are significantly different than those of their progenitors.


Natural selection acts on gene duplications, most often by deleting them from the gene pool or by degrading them into non-functional pseudogenes. This is because fully functional duplicated genes, in combination with the corresponding parent gene, produce abnormally abundant quantities of transcripts. This overexpression often alters the fragile molecular balance of gene products on a cellular level, ultimately resulting in deleterious phenotypic consequences. If these duplicated genes acquire new functions, however, they may confer a selective advantage to an organism, leading to the rise of lineage-specific genes over evolutionary time.

Bork’s team identified a total of 22 genes with more than one copy in humans but only a single copy in all other species tested. They then turned their attention to the gene that exhibited the most dramatic of these duplications: RanBP2. RanBP2 is the largest protein found at the nuclear pore complex, helping to regulate nucleic acid and protein traffic in and out of the nucleus. The corresponding gene is present in all sequenced animal genomes but not in other eukaryotes, such as plants or fungi.

The new gene family characterized by Dr. Bork and his colleagues was largely derived from RanPB2, but it had also acquired a domain from the neighboring GCC2 gene, whose protein product contains a GRIP domain that localizes intracellularly to the trans-Golgi network. The new gene family, spanning approximately 10% of human chromosome 2, was named RGP (for RanBP2-like, GRIP domain-containing proteins).

By analyzing the gene order around the RanBP2 and GCC2 genes, Bork’s team was able to reconstruct the genomic rearrangements leading to the formation of the ancestral RGP locus. These events included a combination of duplication, inversion, partial deletion, and domain acquisition, and this was followed by a series of duplications that gave rise to each RGP family member. A total of eight RGP-family genes were identified, all of which are believed to be fully functional.

To demonstrate that RGP-family genes have functions that are significantly divergent from those of RanBP2, Bork and his co-workers examined the subcellular localization of one of the RGP-family isoforms. In contrast to RanBP2, which is found exclusively at the nuclear envelope, this RGP-family protein was detected in discrete cytoplasmic locations, thereby confirming its functional divergence from RanBP2.

Identifying and characterizing genes that are responsible for primate or human distinctiveness has been a major challenge to scientists. However, this work by Bork and his colleagues should further enable studies focused on the molecular basis for species specificity. "A thorough functional characterization of the other 21 new genes we’ve identified in this study would reveal the functionally most relevant areas for primate evolution," Bork says.

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>