Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research focusing on why estrogenic hormones produce differing results

14.02.2005


New research is shedding light on why estrogenic hormones produce unintended results in women, giving hope to the idea that new drugs might reach their targets and work more effectively. Ultimately it could mean that postmenopausal women would know that hormone-replacement therapy would have only its intended result.



"It’s very difficult right now for women to make a choice about taking estrogen or other estrogen-like compounds, and, I think, it’s equally difficult for physicians to try to tell women what they should do," said Ann M. Nardulli, a professor in the department of molecular and integrative physiology at the University of Illinois at Urbana-Champaign.

Nardulli was the principal investigator of a study published in the Jan. 7 issue of the Journal of Biological Chemistry. In the study, Nardulli, doctoral student Jennifer R. Schultz and postgraduate researcher Larry N. Petz added fuel to the argument that the long-held model for how an estrogen receptor binds to DNA and, in turn, regulates gene transcription is need of retooling.


Nardulli’s team has found four discrete regions of the human progesterone receptor gene that confer hormone responsiveness. In the study, the activities of estradiol, tamoxifen, raloxifene and the soy phytoestrogens genestein and daidzein were examined and compared in uterine, mammary and bone cell lines. The researchers found vast differences based on the four regions. "The model has always been that the estrogen receptor binds to DNA to activate transcription, but now we show that that’s not always the case," Nardulli said. "Binding doesn’t occur equally well in different kinds of tissue, and it requires a broader vision on how transcription changes the functions in cells."

The value of hormone-replacement therapy has come under scrutiny because of links to various cancers. It’s also been discovered that women taking tamoxifen to protect against a relapse of breast cancer were more susceptible to getting uterine cancer. Other research, conducted at Illinois by food scientist William Helferich, has shown that the soy phytoestrogen genestein in doses similar to that found in supplements may negate the ability of tamoxifen to stop cancer redevelopment. Many women take soy supplements to control hot flashes.

The discovery in 1996 of a second estrogen receptor, or binding protein, began to rewrite conventional wisdom. Instead of just one receptor, now known as ER-alpha, researchers began studying the second one, ER-beta. ER-alpha is predominant in the uterus, liver, mammary gland, bone and cardiovascular systems; ER-beta is most expressed in the prostate, ovary and urinary tract.

Researchers also have found that many estrogen-responsive genes don’t have estrogen response elements -- long considered the cornerstone of estrogen receptor binding and transcription. Instead, as in the human progesterone receptor gene, they have multiple binding sites for activator proteins such as the four regions identified in Nardulli’s lab.

The four regions in progesterone receptor gene are known as AP-1 and Sp1 sites. The Sp1 sites, Nardulli said, are "pretty potent activators that get transcription going" when exposed to most of the hormones tested. The AP-1 sites by themselves were weak -- responsive somewhat to estrogen but not to the other hormones. Mutating an AP-1 site in the context of a larger gene region dramatically reduces transcription. Her lab’s findings also supported previous evidence that ER-alpha is much more potent than ER-beta.

"Turning on the expression of genes in a cell is not like turning on a light switch, because you have many different estrogen responsive genes in one cell," Nardulli said. "So, do you want to turn on all the genes to the same extent, or do you want to differentially regulate them? What researchers really would like to do is develop a hormone drug -- a ligand -- that targets exactly the tissues you want to affect without affecting any others."

Such work is already beginning to take shape in other labs at Illinois.

A team led by John A. Katzenellenbogen, a professor of chemistry, and his wife, Benita S. Katzenellenbogen, a professor of molecular and integrative physiology and of cell and structural biology in the College of Medicine at Urbana-Champaign, recently have produced a series of synthesized, non-steroidal estrogenic compounds that seek out and bind with ER-beta very selectively.

In a paper appearing online in advance of regular publication in the Journal of Medicinal Chemistry, published by the American Chemical Society, the Katzenellenbogens report that their compounds work on ER-beta nearly identically to estradiol, but they have almost no effect on the other estrogen receptor, ER-alpha.

"These compounds might prove useful as selective pharmacological probes to study the biological actions of estrogens mediated through ER-beta, and they might lead to the development of useful pharmaceuticals," they wrote in the journal paper.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>