Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rat brain’s executive hub quells alarm center if stress is controllable

14.02.2005


Treatments for mood and anxiety disorders are thought to work, in part, by helping patients control the stresses in their lives. A new study in rats by National Institutes of Health (NIH) grantees provides insight into the brain mechanisms likely involved. When it deems a stressor controllable, an executive hub in the front of the brain quells an alarm center deep in the brainstem, preventing the adverse behavioral and physiological effects of uncontrollable stress.



"It’s as if the prefrontal cortex says: ’Cool it, brainstem! We have control over this and there is no need to get so excited’," quipped Steven Maier, Ph.D., University of Colorado, whose study was funded by the National Institute of Mental Health (NIMH) and the National Institute on Drug Abuse (NIDA). Maier and colleagues posted their findings online in Nature Neuroscience, February 6, 2005.

Lack of control over stressful life experiences has been implicated in mood and anxiety disorders. Rats exposed to uncontrollable stress develop learned helplessness, a syndrome similar to depression and post traumatic stress disorder (PTSD). They lose the ability to learn how to escape stressors. Activation of a brainstem area (dorsal raphe nucleus) has been implicated in such reactions. But this area is too small and lacks the proper sensory inputs to judge whether a stressor is controllable. Many of its inputs come conspicuously from the mid-prefrontal cortex area (medial prefrontal cortex), seat of higher order functions, such as problem-solving and learning from experience. These signals are sent via the chemical messenger serotonin, which is involved in mood regulation and in mediating the effects of the most widely prescribed antidepressants. The medial prefrontal cortex has also been implicated as the source of an "all clear" signal that quells fear in rats.*


To find out the role of the medial prefrontal cortex, Maier’s team chemically inactivated it in rats that were learning to control a stressor. The animals showed the same brainstem activation and, eventually, the same behaviors characteristic of depression (failure to learn to escape) and anxiety (exaggerated fear conditioning) as rats exposed to uncontrollable stress.

"If an organism can cope behaviorally with an event, there’s no need for intense physiological adaptation. It has been assumed that when stressors are uncontrollable the organism learns this, and that it is this uncontrollability that sets off the neural cascade," explained Maier. "However, our data suggest that instead it is control that is the active ingredient. If the organism has control and can cope behaviorally, this is detected by the cortex, which then sends inhibitory signals to the brainstem."

In PTSD, which is triggered by uncontrollable stress, medial prefrontal cortex activity is reduced. Proposing an analogous mechanism, Maier speculated that loss of inhibition from the medial prefrontal cortex may explain increased activity of the amygdala (a fear hub) in PTSD.

Also participating the study were: Drs. Jose Amat, Erin Paul, Sondra Bland, Linda Watkins, and Michael Baratta.

Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci. 2005 Feb 06; [Epub ahead of print].

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov
http://www.nimh.nih.gov/Press/prsafetysignal.cfm

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>