Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rat brain’s executive hub quells alarm center if stress is controllable

14.02.2005


Treatments for mood and anxiety disorders are thought to work, in part, by helping patients control the stresses in their lives. A new study in rats by National Institutes of Health (NIH) grantees provides insight into the brain mechanisms likely involved. When it deems a stressor controllable, an executive hub in the front of the brain quells an alarm center deep in the brainstem, preventing the adverse behavioral and physiological effects of uncontrollable stress.



"It’s as if the prefrontal cortex says: ’Cool it, brainstem! We have control over this and there is no need to get so excited’," quipped Steven Maier, Ph.D., University of Colorado, whose study was funded by the National Institute of Mental Health (NIMH) and the National Institute on Drug Abuse (NIDA). Maier and colleagues posted their findings online in Nature Neuroscience, February 6, 2005.

Lack of control over stressful life experiences has been implicated in mood and anxiety disorders. Rats exposed to uncontrollable stress develop learned helplessness, a syndrome similar to depression and post traumatic stress disorder (PTSD). They lose the ability to learn how to escape stressors. Activation of a brainstem area (dorsal raphe nucleus) has been implicated in such reactions. But this area is too small and lacks the proper sensory inputs to judge whether a stressor is controllable. Many of its inputs come conspicuously from the mid-prefrontal cortex area (medial prefrontal cortex), seat of higher order functions, such as problem-solving and learning from experience. These signals are sent via the chemical messenger serotonin, which is involved in mood regulation and in mediating the effects of the most widely prescribed antidepressants. The medial prefrontal cortex has also been implicated as the source of an "all clear" signal that quells fear in rats.*


To find out the role of the medial prefrontal cortex, Maier’s team chemically inactivated it in rats that were learning to control a stressor. The animals showed the same brainstem activation and, eventually, the same behaviors characteristic of depression (failure to learn to escape) and anxiety (exaggerated fear conditioning) as rats exposed to uncontrollable stress.

"If an organism can cope behaviorally with an event, there’s no need for intense physiological adaptation. It has been assumed that when stressors are uncontrollable the organism learns this, and that it is this uncontrollability that sets off the neural cascade," explained Maier. "However, our data suggest that instead it is control that is the active ingredient. If the organism has control and can cope behaviorally, this is detected by the cortex, which then sends inhibitory signals to the brainstem."

In PTSD, which is triggered by uncontrollable stress, medial prefrontal cortex activity is reduced. Proposing an analogous mechanism, Maier speculated that loss of inhibition from the medial prefrontal cortex may explain increased activity of the amygdala (a fear hub) in PTSD.

Also participating the study were: Drs. Jose Amat, Erin Paul, Sondra Bland, Linda Watkins, and Michael Baratta.

Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci. 2005 Feb 06; [Epub ahead of print].

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov
http://www.nimh.nih.gov/Press/prsafetysignal.cfm

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>