Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time to rewrite the species rulebook

09.02.2005


From person to piranha to petunia, it’s pretty easy to spot different species in the human-scale part of the plant and animal kingdoms. But a new study shows that species differences aren’t so clear, at least as currently measured, when it comes to microscopic bacteria.



MSU researchers have spotted significant differences in genetic libraries among thought-to-be similar bacteria strains. The results, published this week in the journal the Proceedings of the National Academy of Sciences, suggest that new definitions are needed to catalogue bacteria – single-celled organisms with at least a 3.5 billion-year history. "It’s important to point out the importance of these small microbes on Earth; even though they are small, their mass in soil and water is equal to that of all plants," said MSU microbiologist James Tiedje, one of the study’s authors. "Furthermore, they are responsible for recycling the key elements of life so life on Earth can continue."

DNA, used by all life including bacteria to store genetic information, is a double-stranded molecule. When a given DNA molecule is split in two, for instance by heating it up, its two strands will spontaneously find each other, or reassociate, when the temperature drops. Scientists have long exploited this fact in their rough rule-of-thumb approach for saying just what makes up a species of bacteria. Single strands of DNA from two bacteria are mixed together. If most of these strands reassociate – specifically, if 70 percent of strands from bacteria A come together with strands from bacteria B – then the two bacteria strains are said to members of the same species.


Tiedje and his MSU colleague, microbiologist Konstantinos Konstantinidis, set out to put this mix and match approach to the test. The two scientists selected 70 related bacteria whose genomes, or complete genetic libraries, had been fully sequenced. A sequenced genome gives scientists what amounts to a card catalogue guide to an organism’s genetic information.

The MSU scientists downloaded the already-sequenced bacteria genomes from a variety of sites on the Internet. Then they did some cross-card catalogue comparisons. To their surprise, many bacteria that are considered members of the same species by the current mix and match approach, often share as few as 65 percent of their genes. Humans, in comparison, share 75 percent of their genes with fish. No one’s calling for the species rules to be rewritten so that humans are lumped with their distant underwater relatives. And when it comes to bacteria, the authors say, the current species definition appears to be too liberal.

Much of the differences between genetically-similar bacteria appear to be the result of environmental pressures. E. coli bacteria, for instance, exists everywhere from the intestines of warm blooded animals to paper mills. Any new way of tallying up bacteria species should "accommodate the ecological distinctiveness of the organisms," the authors write. "The point is about the value of a correct understanding of species – people expect a species to have certain traits and live in certain habitats," said Tiedje, whose work is also supported by the Michigan Agricultural Experiment Station. "If the species definition is not reasonably predictive of this, then it loses its value. This can be important for pathogen identification, quarantine or biotechnology, for example."

Konstantinidis and Tiedje also noted that even bacteria with genetic card catalogues that were as much as 99 percent similar had enough outward differences to be separate species. This shouldn’t come as a shock. Humans and chimpanzees, in comparison, share 98.7 percent of their DNA. But that small difference at the genetic level results in a big difference when it comes to outward appearance and Konstantinidis and Tiedje’s work is supported by the Bouyoukos Fellowship Program, the U.S. Department of Energy’s Microbial Genome Program, the Ribosomal Database Project and the MSU Center for Microbial Ecology.

Jim Tiedje | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>