Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Time to rewrite the species rulebook


From person to piranha to petunia, it’s pretty easy to spot different species in the human-scale part of the plant and animal kingdoms. But a new study shows that species differences aren’t so clear, at least as currently measured, when it comes to microscopic bacteria.

MSU researchers have spotted significant differences in genetic libraries among thought-to-be similar bacteria strains. The results, published this week in the journal the Proceedings of the National Academy of Sciences, suggest that new definitions are needed to catalogue bacteria – single-celled organisms with at least a 3.5 billion-year history. "It’s important to point out the importance of these small microbes on Earth; even though they are small, their mass in soil and water is equal to that of all plants," said MSU microbiologist James Tiedje, one of the study’s authors. "Furthermore, they are responsible for recycling the key elements of life so life on Earth can continue."

DNA, used by all life including bacteria to store genetic information, is a double-stranded molecule. When a given DNA molecule is split in two, for instance by heating it up, its two strands will spontaneously find each other, or reassociate, when the temperature drops. Scientists have long exploited this fact in their rough rule-of-thumb approach for saying just what makes up a species of bacteria. Single strands of DNA from two bacteria are mixed together. If most of these strands reassociate – specifically, if 70 percent of strands from bacteria A come together with strands from bacteria B – then the two bacteria strains are said to members of the same species.

Tiedje and his MSU colleague, microbiologist Konstantinos Konstantinidis, set out to put this mix and match approach to the test. The two scientists selected 70 related bacteria whose genomes, or complete genetic libraries, had been fully sequenced. A sequenced genome gives scientists what amounts to a card catalogue guide to an organism’s genetic information.

The MSU scientists downloaded the already-sequenced bacteria genomes from a variety of sites on the Internet. Then they did some cross-card catalogue comparisons. To their surprise, many bacteria that are considered members of the same species by the current mix and match approach, often share as few as 65 percent of their genes. Humans, in comparison, share 75 percent of their genes with fish. No one’s calling for the species rules to be rewritten so that humans are lumped with their distant underwater relatives. And when it comes to bacteria, the authors say, the current species definition appears to be too liberal.

Much of the differences between genetically-similar bacteria appear to be the result of environmental pressures. E. coli bacteria, for instance, exists everywhere from the intestines of warm blooded animals to paper mills. Any new way of tallying up bacteria species should "accommodate the ecological distinctiveness of the organisms," the authors write. "The point is about the value of a correct understanding of species – people expect a species to have certain traits and live in certain habitats," said Tiedje, whose work is also supported by the Michigan Agricultural Experiment Station. "If the species definition is not reasonably predictive of this, then it loses its value. This can be important for pathogen identification, quarantine or biotechnology, for example."

Konstantinidis and Tiedje also noted that even bacteria with genetic card catalogues that were as much as 99 percent similar had enough outward differences to be separate species. This shouldn’t come as a shock. Humans and chimpanzees, in comparison, share 98.7 percent of their DNA. But that small difference at the genetic level results in a big difference when it comes to outward appearance and Konstantinidis and Tiedje’s work is supported by the Bouyoukos Fellowship Program, the U.S. Department of Energy’s Microbial Genome Program, the Ribosomal Database Project and the MSU Center for Microbial Ecology.

Jim Tiedje | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>