Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy for Parkinson’s disease moves forward in animals

09.02.2005


An international team of scientists has used gene therapy in two separate studies to renew brain cells and restore normal movements in monkeys and rats with a drug-induced form of Parkinson’s disease.



The research, detailed online in the scientific publications Brain and The Journal of Neuroscience, essentially describes one strategy to halt Parkinson’s disease at its onset and another strategy to treat the devastating side effects that occur when treating the disease in its later stages.

By inserting corrective genes into the brain, scientists studying small monkeys called marmosets prevented brain damage by producing therapeutic levels of a protein that helps nourish brain cells, said Ron Mandel, Ph.D., a scientist with the University of Florida’s McKnight Brain Institute and Genetics Institute who was part of the research team.


The protein, called GDNF, short for g lial cell line derived neurotrophic factor, is believed to preserve brain cells and could provide protection against Parkinson’s disease. But its use has been debated since trials in humans ended last year without showing clinical improvements. Amgen, the world’s largest biotechnology company, conducted the trials and later halted use of the drug because of safety concerns, creating an outcry from hopeful Parkinson’s patients.

But the gene therapy used in monkeys represents a different way to deliver the GDNF to the brain, causing the body to produce it naturally. It also produces more manageable levels of the protein in the brain.

“Our strategy is a neuroprotective concept and would only be amenable for early stage patients to keep a good quality of life. It would be a huge change in the way treatment is done,” said Mandel, a neuroscientist in UF’s College of Medicine. “We know the GDNF protects the neurons in primates from the model that we use, so that’s good. We now know we can use very low doses that are still effective, so that’s good. But we need a safety net. Once we turn it on, it’s on for life. So we have to control it, and we’re working on this as we speak. But it’s not ready for clinical trials.”

About a half million Americans struggle with Parkinson’s disease, including former Attorney General Janet Reno, former heavyweight boxing champion Muhammad Ali and film star Michael J. Fox, according to the National Institute for Neurological Disorders and Stroke. Pope John Paul II was recently hospitalized because of breathing problems that were complicated by his advancing Parkinson’s disease.

“The use of GDNF as an approach against Parkinson’s disease has truly had some ups and downs,” said J. William Langston, M.D., scientific director and chief executive officer of The Parkinson’s Institute in Sunnyvale, Calif., who recently chaired a panel probing GDNF experimentation for the Michael J. Fox Foundation for Parkinson’s Research. “This is additional experimental evidence that suggests that it can be a promising approach to this disease using in vivo gene therapy, which is very applicable to humans. It even presents theoretical reasons that might solve some of the safety issues that have been raised about GDNF. But many things remain that we still don’t understand.”

The recent findings in laboratory animals were a joint effort of Lund University in Lund, Sweden, the University of Cambridge in the United Kingdom, and the McKnight Brain Institute and the Genetics Institute of the University of Florida. Scientists included internationally renowned Parkinson’s expert Anders Björklund of Lund, a pioneer of the experimental treatment involving the transplantation of fetal cells into the brains of Parkinson’s patients, and his colleague Deniz Kirik, a neurobiologist.

“This work with GDNF in combination with other regenerative medicine approaches, including stem cells, promises to have a place for both protection and repair in Parkinson’s disease,” said Dennis Steindler, Ph.D., director of the McKnight Brain Institute and a professor of neuroscience. “It is important to appropriately introduce the GDNF into the Parkinson’s disease setting, where that introduction can provide insight into how to protect neural cells. This is showing us a new way to approach the problem.”

Parkinson’s disease is caused by the death of brain cells that produce a vital chemical known as dopamine, which carries messages that tell the body how and when to move. In tests with 31 monkeys, including a control group, scientists inserted copies of a gene to produce GDNF into a region in the front part of the brain called the striatum. They then induced Parkinson-like conditions by introducing a drug to destroy the dopamine-producing cells. Seventeen weeks after that, not only did the GDNF-treated monkeys show improvement in performing tasks, analysis of brain tissue showed the animals’ dopamine systems were actually spared by the treatment.

“The simplest question we’re asking is, ‘Does any particular combination of proteins prevent or accelerate degeneration of the neurons?’” said Nicholas Muzyczka, Ph.D., an eminent scholar and professor of molecular genetics and microbiology at UF’s College of Medicine who participated in the research. “For some time Dr. Mandel has been working on the idea of introducing a vector into brain that would express GDNF. What they’ve found is that if you get low-level expression, you can prevent cell death in a part of the brain called the substantia nigra. That’s been shown before in rodent models, but it’s encouraging to see data that it works in higher animals like monkeys.”

Meanwhile, in separate experiments with rats, researchers used gene therapy to completely reverse abnormal movements called dyskinesias in some of the animals, suggesting a new way to combat the flailing movements produced by a widely used drug treatment for Parkinson’s disease. Levodopa, considered the gold standard of current treatment, enables the brain to replenish its dwindling supply of dopamine, sidetracking the destructive course of Parkinson’s disease. But eventually the treatment can backfire.

“Levodopa generally works great for several years, but then it actually starts creating movement problems,” Mandel said. “Our idea is that instead of taking pills that create detrimental fluctuations of L-dopa levels, a continuous, therapeutic dose would be better for you.

As for efforts to reverse impaired movements in rats, scientists used 33 animals with severe dopamine depletion and transferred a gene to provide a source of L-dopa production into the animals’ striata. Before receiving the treatment, all animals had limited use in their left paws. After treatment, the animals receiving the therapeutic enzyme mixture show complete recovery in their paws. Researchers say not only did the rats recover substantial degrees of function in their impaired forelimbs, continuous levels of L-dopa were being produced in their brains, blocking side effects.

John Pastor | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>