Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New stem cell source could boost bone marrow success

09.02.2005


Uncharted area of umbilical cord offers hope



University of Toronto researchers have discovered an ample source of stem cells in an uncharted part of the umbilical cord, providing new hope for bone marrow transplants and tissue repair.

The study, published in the February issue of Stem Cells, outlines how researchers discovered that the jelly-like connective tissue surrounding the blood vessels of the human umbilical cord, the so-called "Wharton’s Jelly," is rich in mesenchymal progenitor cells – cells that generate bone, cartilage and other tissues – and can be harvested to generate an abundant supply in a short amount of time. This expandable source of progenitor cells could greatly improve bone marrow transplantation, a painful yet common procedure that currently has a 30 to 40 per cent success rate in treating disease.


Professor John Davies of U of T’s Institute of Biomaterials and Biomedical Engineering (IBBME) and the study’s lead author, says that the cells around the vessels – human umbilical cord perivascular (HUCPV) cells – were often discarded because previous research has concentrated only on the cord blood, where the frequency of mesenchymal stem cells is only one in 200 million. The frequency in the HUCPV cells is one in 300. "We hypothesized that since the umbilical cord grows so rapidly during fetal development, there must be some source producing these mesenchymal stem cells," says Davies. "We found that the jelly tissue immediately around the vessels had the richest population of these cells. Once we isolate them, it only takes 21 days to generate enough stem cells for up to 1000 therapeutic cell doses."

Bone marrow transplants treat diseases such as cancers and immune deficiency disorders by replacing diseased cells with fresh ones found inside bones. The transplant requires hematopoietic stem cells (blood-forming stem cells) and, ideally mesenchymal stem cells too, both of which are found in the marrow, to work efficiently. Other research indicates that infusing the marrow with added mesenchymal stem cells can increase the transplant success rate.

"Mesenchymal stem cells can leave the marrow during injury and actually home to the tissue which is damaged," says Davies. "This is why these cells are very important to us in an ongoing state of tissue repair throughout life." Davies says that administering extra mesenchymal progenitor cells can also help repair broken bones or build new cartilage.

To harvest the HUCPV cells, Davies and his team split open umbilical cords and pulled out the blood vessels with their surrounding Wharton’s Jelly. (All the cords come from consenting full-term patients.) The vessels were sutured closed and suspended in collagenase, an enzyme that breaks down the Wharton’s Jelly around the vessels to release the cells inside. The HUCPV cells were then isolated and cultivated in vitro.

Many parents already freeze the cord blood cells containing hematopoietic stem cells, but U of T professor Bill Stanford, also part of the IBBME, and his wife who is also a stem cell researcher were the first to take advantage of the study by freezing the HUCPV cells in their son’s umbilical cord. Their son was born in April 2004. "Any parent who banks their cord blood or, in this case, the HUCPV cells, hopes they never have to use them," says Stanford. "We were already banking our son’s cord blood cells so why not bank his HUCPV cells? The data in this study just got better and better and we were too impressed by this source of stem cells not to take advantage of this biological insurance."

According to Davies, the next step is to test the HUCPV cells in immunological compromised animals such as mice. "While we still have some way to go until this therapy is ready for clinical trials, I am hopeful HUCPV cells could radically improve the success of bone marrow transplants," he says.

J.E. Davies | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>