Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New stem cell source could boost bone marrow success

09.02.2005


Uncharted area of umbilical cord offers hope



University of Toronto researchers have discovered an ample source of stem cells in an uncharted part of the umbilical cord, providing new hope for bone marrow transplants and tissue repair.

The study, published in the February issue of Stem Cells, outlines how researchers discovered that the jelly-like connective tissue surrounding the blood vessels of the human umbilical cord, the so-called "Wharton’s Jelly," is rich in mesenchymal progenitor cells – cells that generate bone, cartilage and other tissues – and can be harvested to generate an abundant supply in a short amount of time. This expandable source of progenitor cells could greatly improve bone marrow transplantation, a painful yet common procedure that currently has a 30 to 40 per cent success rate in treating disease.


Professor John Davies of U of T’s Institute of Biomaterials and Biomedical Engineering (IBBME) and the study’s lead author, says that the cells around the vessels – human umbilical cord perivascular (HUCPV) cells – were often discarded because previous research has concentrated only on the cord blood, where the frequency of mesenchymal stem cells is only one in 200 million. The frequency in the HUCPV cells is one in 300. "We hypothesized that since the umbilical cord grows so rapidly during fetal development, there must be some source producing these mesenchymal stem cells," says Davies. "We found that the jelly tissue immediately around the vessels had the richest population of these cells. Once we isolate them, it only takes 21 days to generate enough stem cells for up to 1000 therapeutic cell doses."

Bone marrow transplants treat diseases such as cancers and immune deficiency disorders by replacing diseased cells with fresh ones found inside bones. The transplant requires hematopoietic stem cells (blood-forming stem cells) and, ideally mesenchymal stem cells too, both of which are found in the marrow, to work efficiently. Other research indicates that infusing the marrow with added mesenchymal stem cells can increase the transplant success rate.

"Mesenchymal stem cells can leave the marrow during injury and actually home to the tissue which is damaged," says Davies. "This is why these cells are very important to us in an ongoing state of tissue repair throughout life." Davies says that administering extra mesenchymal progenitor cells can also help repair broken bones or build new cartilage.

To harvest the HUCPV cells, Davies and his team split open umbilical cords and pulled out the blood vessels with their surrounding Wharton’s Jelly. (All the cords come from consenting full-term patients.) The vessels were sutured closed and suspended in collagenase, an enzyme that breaks down the Wharton’s Jelly around the vessels to release the cells inside. The HUCPV cells were then isolated and cultivated in vitro.

Many parents already freeze the cord blood cells containing hematopoietic stem cells, but U of T professor Bill Stanford, also part of the IBBME, and his wife who is also a stem cell researcher were the first to take advantage of the study by freezing the HUCPV cells in their son’s umbilical cord. Their son was born in April 2004. "Any parent who banks their cord blood or, in this case, the HUCPV cells, hopes they never have to use them," says Stanford. "We were already banking our son’s cord blood cells so why not bank his HUCPV cells? The data in this study just got better and better and we were too impressed by this source of stem cells not to take advantage of this biological insurance."

According to Davies, the next step is to test the HUCPV cells in immunological compromised animals such as mice. "While we still have some way to go until this therapy is ready for clinical trials, I am hopeful HUCPV cells could radically improve the success of bone marrow transplants," he says.

J.E. Davies | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>