Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing of marine bacterium will help study of cell communication

08.02.2005


The opportunity to annotate the genome of the glow-in-the-dark bacterium, Vibrio fischeri, which lives in symbiotic harmony within the light organ of the bobtail squid, has helped a Virginia Tech microbiologist advance her research on quorum sensing, or how cells communicate and function as a community.



Researchers studying the newly sequenced genome of the marine bacterium V. fischeri, described this week in the Proceedings of the National Academy of Sciences (PNAS), have so far observed both differences and similarities in gene arrangement between it and pathogenic Vibrio species. V. fischeri has a lower GC content than other sequenced Vibrio species, but it is still more closely related to them than other organisms. (Among the four nucleotides that make up DNA – adenine, guanine, thymine, and cytosine (ATGC) – ’A’ pairs with ’T’ and ’G’ pairs with ’C’. The more GC content, the more tightly DNA strands bind.)

Despite the fact that it is a symbiont, V. fischer’s genome contains genes that may have toxin activity. "Analysis of this sequence has revealed surprising parallels with Vibrio cholerae and other pathogens," said Ann Stevens, associate professor of biology at Virginia Tech.


This sequence research is described in the PNAS online early edition the week of February 7, 2005, (www.pnas.org), in the article, "Complete genome sequence of Vibrio fischeri: A symbiotic bacterium with pathogenic congeners," by E. G. Ruby, professor of medical microbiology and immunology at the University of Wisconsin, Madison, previously at the University of Hawaii; C. Lupp; J. McCann; D. Millikan; A. Schaefer; and C. Whistler of the University of Hawaii at Honolulu; M. Urbanowski and E. P. Greenberg of the University of Iowa at Iowa City; J. Campbell at Integrated Genomics; A. Dunn and E. Stabb at the University of Georgia at Athens; Marie Faini and Ann Stevens of Virginia Tech; R. Gunsalus of the University of California at Los Angeles; and K. Visick of Loyola University Chicago.

Ann Stevens, associate professor of biology at Virginia Tech, studies how cell-to-cell interaction regulates bacterial processes that include antibiotic or toxin production, biofilm formation, and bioluminescence. One of the longest studied models of quorum sensing is the bioluminescent marine bacterium V. fischeri.

"It was selected by Drs. Ruby and Greenberg to be sequenced exactly because it is so well studied," said Stevens. "This was also the first time a non-pathogenic Vibrio species has been sequenced and there is the potential for valuable lessons as it is compared with the pathogenic species. I was particularly pleased when my graduate student, Marie Faini, and I were given the opportunity to be members of the team that annotated the sequence."

Annotation is a complex process that assigns functions to genes. Having access to the genetic sequence in order to perform this chore gave Stevens and Faini early access to specific information about the genes of the bacterium she has been studying for several years.

Many different bacteria use quorum sensing. Stevens explains that cells release autoinducer molecules. The numbers of these signal molecules increase with cell density, until they initiate various reactions, such as light production – or, in a pathogen, the release of toxin once a certain level of bacteria build up.

Stevens studies the regulation system of the cell-to-cell communication. "Our quorum sensing research group at Virginia Tech is working to build a more complete understanding of the molecular processes that occur at the point that a bacterium changes its gene expression pattern in response to quorum sensing," she said. The genome sequence has allowed Stevens to begin exploring the connection between quorum sensing and other global regulatory networks through a combination of comparative genomics and experimental molecular biology.

Other researchers are focusing on the relationship between the bacterium and its animal host. The PNAS article concludes, "If we are to understand the unifying themes underlying these contrasting bacteria–host interactions, we must begin to use comparative genomic approaches with closely related pathogenic and beneficial microbial species."

Marie Faini O’Brien of Frederick, Maryland, earned her master’s degree in biology in April 2003.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.biol.vt.edu/faculty/stevens/
http://www.medmicro.wisc.edu/department/faculty/ruby.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>