Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing of marine bacterium will help study of cell communication

08.02.2005


The opportunity to annotate the genome of the glow-in-the-dark bacterium, Vibrio fischeri, which lives in symbiotic harmony within the light organ of the bobtail squid, has helped a Virginia Tech microbiologist advance her research on quorum sensing, or how cells communicate and function as a community.



Researchers studying the newly sequenced genome of the marine bacterium V. fischeri, described this week in the Proceedings of the National Academy of Sciences (PNAS), have so far observed both differences and similarities in gene arrangement between it and pathogenic Vibrio species. V. fischeri has a lower GC content than other sequenced Vibrio species, but it is still more closely related to them than other organisms. (Among the four nucleotides that make up DNA – adenine, guanine, thymine, and cytosine (ATGC) – ’A’ pairs with ’T’ and ’G’ pairs with ’C’. The more GC content, the more tightly DNA strands bind.)

Despite the fact that it is a symbiont, V. fischer’s genome contains genes that may have toxin activity. "Analysis of this sequence has revealed surprising parallels with Vibrio cholerae and other pathogens," said Ann Stevens, associate professor of biology at Virginia Tech.


This sequence research is described in the PNAS online early edition the week of February 7, 2005, (www.pnas.org), in the article, "Complete genome sequence of Vibrio fischeri: A symbiotic bacterium with pathogenic congeners," by E. G. Ruby, professor of medical microbiology and immunology at the University of Wisconsin, Madison, previously at the University of Hawaii; C. Lupp; J. McCann; D. Millikan; A. Schaefer; and C. Whistler of the University of Hawaii at Honolulu; M. Urbanowski and E. P. Greenberg of the University of Iowa at Iowa City; J. Campbell at Integrated Genomics; A. Dunn and E. Stabb at the University of Georgia at Athens; Marie Faini and Ann Stevens of Virginia Tech; R. Gunsalus of the University of California at Los Angeles; and K. Visick of Loyola University Chicago.

Ann Stevens, associate professor of biology at Virginia Tech, studies how cell-to-cell interaction regulates bacterial processes that include antibiotic or toxin production, biofilm formation, and bioluminescence. One of the longest studied models of quorum sensing is the bioluminescent marine bacterium V. fischeri.

"It was selected by Drs. Ruby and Greenberg to be sequenced exactly because it is so well studied," said Stevens. "This was also the first time a non-pathogenic Vibrio species has been sequenced and there is the potential for valuable lessons as it is compared with the pathogenic species. I was particularly pleased when my graduate student, Marie Faini, and I were given the opportunity to be members of the team that annotated the sequence."

Annotation is a complex process that assigns functions to genes. Having access to the genetic sequence in order to perform this chore gave Stevens and Faini early access to specific information about the genes of the bacterium she has been studying for several years.

Many different bacteria use quorum sensing. Stevens explains that cells release autoinducer molecules. The numbers of these signal molecules increase with cell density, until they initiate various reactions, such as light production – or, in a pathogen, the release of toxin once a certain level of bacteria build up.

Stevens studies the regulation system of the cell-to-cell communication. "Our quorum sensing research group at Virginia Tech is working to build a more complete understanding of the molecular processes that occur at the point that a bacterium changes its gene expression pattern in response to quorum sensing," she said. The genome sequence has allowed Stevens to begin exploring the connection between quorum sensing and other global regulatory networks through a combination of comparative genomics and experimental molecular biology.

Other researchers are focusing on the relationship between the bacterium and its animal host. The PNAS article concludes, "If we are to understand the unifying themes underlying these contrasting bacteria–host interactions, we must begin to use comparative genomic approaches with closely related pathogenic and beneficial microbial species."

Marie Faini O’Brien of Frederick, Maryland, earned her master’s degree in biology in April 2003.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.biol.vt.edu/faculty/stevens/
http://www.medmicro.wisc.edu/department/faculty/ruby.html

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>