Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing of marine bacterium will help study of cell communication

08.02.2005


The opportunity to annotate the genome of the glow-in-the-dark bacterium, Vibrio fischeri, which lives in symbiotic harmony within the light organ of the bobtail squid, has helped a Virginia Tech microbiologist advance her research on quorum sensing, or how cells communicate and function as a community.



Researchers studying the newly sequenced genome of the marine bacterium V. fischeri, described this week in the Proceedings of the National Academy of Sciences (PNAS), have so far observed both differences and similarities in gene arrangement between it and pathogenic Vibrio species. V. fischeri has a lower GC content than other sequenced Vibrio species, but it is still more closely related to them than other organisms. (Among the four nucleotides that make up DNA – adenine, guanine, thymine, and cytosine (ATGC) – ’A’ pairs with ’T’ and ’G’ pairs with ’C’. The more GC content, the more tightly DNA strands bind.)

Despite the fact that it is a symbiont, V. fischer’s genome contains genes that may have toxin activity. "Analysis of this sequence has revealed surprising parallels with Vibrio cholerae and other pathogens," said Ann Stevens, associate professor of biology at Virginia Tech.


This sequence research is described in the PNAS online early edition the week of February 7, 2005, (www.pnas.org), in the article, "Complete genome sequence of Vibrio fischeri: A symbiotic bacterium with pathogenic congeners," by E. G. Ruby, professor of medical microbiology and immunology at the University of Wisconsin, Madison, previously at the University of Hawaii; C. Lupp; J. McCann; D. Millikan; A. Schaefer; and C. Whistler of the University of Hawaii at Honolulu; M. Urbanowski and E. P. Greenberg of the University of Iowa at Iowa City; J. Campbell at Integrated Genomics; A. Dunn and E. Stabb at the University of Georgia at Athens; Marie Faini and Ann Stevens of Virginia Tech; R. Gunsalus of the University of California at Los Angeles; and K. Visick of Loyola University Chicago.

Ann Stevens, associate professor of biology at Virginia Tech, studies how cell-to-cell interaction regulates bacterial processes that include antibiotic or toxin production, biofilm formation, and bioluminescence. One of the longest studied models of quorum sensing is the bioluminescent marine bacterium V. fischeri.

"It was selected by Drs. Ruby and Greenberg to be sequenced exactly because it is so well studied," said Stevens. "This was also the first time a non-pathogenic Vibrio species has been sequenced and there is the potential for valuable lessons as it is compared with the pathogenic species. I was particularly pleased when my graduate student, Marie Faini, and I were given the opportunity to be members of the team that annotated the sequence."

Annotation is a complex process that assigns functions to genes. Having access to the genetic sequence in order to perform this chore gave Stevens and Faini early access to specific information about the genes of the bacterium she has been studying for several years.

Many different bacteria use quorum sensing. Stevens explains that cells release autoinducer molecules. The numbers of these signal molecules increase with cell density, until they initiate various reactions, such as light production – or, in a pathogen, the release of toxin once a certain level of bacteria build up.

Stevens studies the regulation system of the cell-to-cell communication. "Our quorum sensing research group at Virginia Tech is working to build a more complete understanding of the molecular processes that occur at the point that a bacterium changes its gene expression pattern in response to quorum sensing," she said. The genome sequence has allowed Stevens to begin exploring the connection between quorum sensing and other global regulatory networks through a combination of comparative genomics and experimental molecular biology.

Other researchers are focusing on the relationship between the bacterium and its animal host. The PNAS article concludes, "If we are to understand the unifying themes underlying these contrasting bacteria–host interactions, we must begin to use comparative genomic approaches with closely related pathogenic and beneficial microbial species."

Marie Faini O’Brien of Frederick, Maryland, earned her master’s degree in biology in April 2003.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.biol.vt.edu/faculty/stevens/
http://www.medmicro.wisc.edu/department/faculty/ruby.html

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>