Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rats infected as newborns grew up vulnerable to memory problems during an immune challenge

07.02.2005


Research confirms how early-life events shape later physiology



Underscoring the value of good prenatal care, new research suggests that early infection may create a cognitive vulnerability that appears later during stress on the immune system. Researchers at the University of Colorado at Boulder have reported that rats who experienced a one-time infection as newborns didn’t learn as well as adult rats who were not infected as pups, after their immunity was challenged. The research is in February’s Behavioral Neuroscience, published by the American Psychological Association (APA).
The findings fit into a growing body of evidence that even a one-time infection can potentially permanently change physiological systems, a phenomenon called "perinatal programming."

Understanding how infection in newborns can disrupt memory in immune-challenged adults may help scientists to understand how exposure to germs or environmental stressors before or just after birth may foster susceptibility to neuropsychiatric and neurodegenerative diseases. For example, prenatal viral infection has been implicated in schizophrenia, autism and cerebral palsy; bacterial infection is a risk factor for Parkinson’s disease. Up to 20 percent of pregnancies have complications involving infections of the uterus and its contents, a number that will rise as more children are born premature.



In the study, a team led by Staci Bilbo, PhD, injected a group of 49 rat pups on postnatal Day 4 either with the common intestinal bacteria E. coli, with salt water, or with nothing. In rats, Day 4 is like the third trimester in human pregnancies, a time when the brain grows significantly.

Once the pups grew up, Bilbo and her colleagues tested the adults’ memory about 60 days after birth. To test memory, each rat was allowed to explore a novel experimental chamber for several minutes on the first day. On the second day, each rat was placed back into the chamber and was shocked for two seconds and then put back in its home cage. After 24 hours, the researchers again put each rat in the experimental chamber and recorded whether the rats froze -- was immobilized by fear -- or stayed active.

All groups of rats froze the same amount, indicating they had learned. However, immediately after they explored the experimental chamber on the first day, a second group of these rats was injected with a low dose of lipopolysaccharide (LPS), a bacterial component that causes flu-like symptoms,. This time, the rats infected with E. coli as newborns froze 70 percent less often than the rats who’d been injected with salt water as newborns. In other words, under immune stress, the early-infected rats learned to fear the place where they’d been shocked significantly less often than rats who had not been infected as pups. They simply didn’t remember it was dangerous.

In a second experiment, the researchers injected 32 different neonatally infected and control adult rats with salt water or with bacterial LPS. Two hours later, they euthenized the rats and checked brain markers of the immune response. Because it spurs an immune response without live bacteria, LPS helps to reveal how the immune system works on its own, without the complication of side effects.

The team found that E. coli-infected pups later injected with LPS had significantly lower concentrations of cytokines called interleukins than control pups (they tested 32 PUPS in all). Immune cells release these cytokines, or certain protein molecules, in response to germs. Prior research had suggested that higher IL-1BETA in the brain’s hippocampus, a key memory area, disrupts the consolidation of memories following a learning experience. Thus it appears that there may be an optimal range for IL-1BETA, with either too much or too little inhibiting memory storage. Bilbo says, "The take-home message is that immune responses in a healthy brain are tightly regulated and controlled; any alteration in these responses is likely to cause problems."

She adds that, "Memory impairment in wild animals would undoubtedly have severe implications for survival, for example remembering nest sites, food sites and predator vicinities, as well as for fitness, for example remembering territories and potential mate locations."

Bilbo stresses that adults rats who were not infected as pups do not suffer memory impairment as the result of adult infection, and those who were infected are completely normal until they get that second immune system challenge. The relatively uncommon one-two punch seems to cause the problem, although researchers don’t know how long it lasts. Still, says Bilbo, "This may go far to explain some of the individual variability in disease susceptibility, other than genetic variation, in animals in the wild and perhaps humans."

The authors conclude that neonatal infection can create later problems by changing how well the body can respond to future immune challenges. Those changes affect how well memories are stored. The early alterationS may be to the basic architecture of glial cells called astrocytes within the hippocampus, which in turn help the central nervous system respond to injury or infection. Because astrocytes also help to determine the number and connectivity of nervous system synapses early in life, especially the first week after birth in rats, they may be involved in the ability to learn and remember, possibly via some link (says Bilbo) to cytokine IL-1BETA production.

APA Public Affairs Office | EurekAlert!
Further information:
http://www.apa.org
http://www.apa.org/releases/earlylife_article.pdf

More articles from Life Sciences:

nachricht How the insulin receptor works
19.02.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

How the insulin receptor works

19.02.2018 | Life Sciences

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>