Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stat5 protein inhibits spread of breast cancer cells

04.02.2005


The presence of a protein known as Stat5 prevents laboratory-grown breast cancer cells from becoming invasive and aggressive, according to new research from Georgetown University. The research, which appears in the January 27 issue of Oncogene, could one day lead to advanced therapies for breast cancer patients.



"This new insight is significant because it is the invasive behavior of breast cancer cells that leads to the formation of metastatic cancer, the most advanced and serious form of the disease," said Hallgeir Rui, MD, PhD, associate professor of oncology, Lombardi Comprehensive Cancer Center at Georgetown University and principal investigator of the study.

The research, which was funded by the National Institutes of Health and the Department of Defense, showed that when Stat5 was active, breast cancer cells were not only less invasive, but also aggregated into clusters, resembling healthy breast cells. Conversely, loss of Stat5 stimulated invasive tumor cell activities.


"The apparent suppressive role of Stat5 in breast cancer is surprising in light of the tumor promoting role that Stat5 appears to play in leukemias, lymphomas, and prostate cancer," said Rui. "On the other hand, the new data may not be so unexpected since Stat5 is known to promote differentiation of healthy breast cells. Differentiation is a form of orderliness that is gradually lost as cancer cells become more aggressive and invasive."

Stat5 is a DNA-binding protein that regulates expression of certain genes, many of which remain unknown. During pregnancy, Stat5 is activated by the hormone prolactin, and stimulates milk production in the breast. In related research, Rui and colleagues have recently shown that Stat5 remains active in healthy breast cells in non-pregnant women. However, active Stat5 is lost in many breast cancers, especially as the tumors become more aggressive and metastatic.

Rui cautions that this research was done with cancer cells cultured in the laboratory and that additional studies are needed to determine whether Stat5 also inhibits invasion of human breast cancer cells tested in mice. These studies are underway and the outcome will determine whether new therapies could be designed to one day take advantage of the invasion-suppressive role of Stat5 in breast cancer. Because Stat5 is a protein that is located inside the cell, it cannot be administered in the form of injections to slow down breast tumor cells. However, Rui’s laboratory is exploring alternative ways of switching Stat5 back on in breast cancer.

The results of this study support related research done last year by Rui and his colleagues: In a study that was published in the June 1, 2004 issue of the Journal of Clinical Oncology, the team identified Stat5 as a biomarker of a type of breast cancer that is associated with a favorable prognosis in patients. In fact, in breast cancer patients whose tumors had not yet spread to the nearby lymph nodes, loss of Stat5 was associated with a nearly 7.5-fold increased risk of death from recurring breast cancer. The new research now provides a mechanism to explain why Stat5 may be a useful tumor marker to predict risk and outcome in early stage breast cancer patients.

Amy DeMaria | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>