Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stat5 protein inhibits spread of breast cancer cells

04.02.2005


The presence of a protein known as Stat5 prevents laboratory-grown breast cancer cells from becoming invasive and aggressive, according to new research from Georgetown University. The research, which appears in the January 27 issue of Oncogene, could one day lead to advanced therapies for breast cancer patients.



"This new insight is significant because it is the invasive behavior of breast cancer cells that leads to the formation of metastatic cancer, the most advanced and serious form of the disease," said Hallgeir Rui, MD, PhD, associate professor of oncology, Lombardi Comprehensive Cancer Center at Georgetown University and principal investigator of the study.

The research, which was funded by the National Institutes of Health and the Department of Defense, showed that when Stat5 was active, breast cancer cells were not only less invasive, but also aggregated into clusters, resembling healthy breast cells. Conversely, loss of Stat5 stimulated invasive tumor cell activities.


"The apparent suppressive role of Stat5 in breast cancer is surprising in light of the tumor promoting role that Stat5 appears to play in leukemias, lymphomas, and prostate cancer," said Rui. "On the other hand, the new data may not be so unexpected since Stat5 is known to promote differentiation of healthy breast cells. Differentiation is a form of orderliness that is gradually lost as cancer cells become more aggressive and invasive."

Stat5 is a DNA-binding protein that regulates expression of certain genes, many of which remain unknown. During pregnancy, Stat5 is activated by the hormone prolactin, and stimulates milk production in the breast. In related research, Rui and colleagues have recently shown that Stat5 remains active in healthy breast cells in non-pregnant women. However, active Stat5 is lost in many breast cancers, especially as the tumors become more aggressive and metastatic.

Rui cautions that this research was done with cancer cells cultured in the laboratory and that additional studies are needed to determine whether Stat5 also inhibits invasion of human breast cancer cells tested in mice. These studies are underway and the outcome will determine whether new therapies could be designed to one day take advantage of the invasion-suppressive role of Stat5 in breast cancer. Because Stat5 is a protein that is located inside the cell, it cannot be administered in the form of injections to slow down breast tumor cells. However, Rui’s laboratory is exploring alternative ways of switching Stat5 back on in breast cancer.

The results of this study support related research done last year by Rui and his colleagues: In a study that was published in the June 1, 2004 issue of the Journal of Clinical Oncology, the team identified Stat5 as a biomarker of a type of breast cancer that is associated with a favorable prognosis in patients. In fact, in breast cancer patients whose tumors had not yet spread to the nearby lymph nodes, loss of Stat5 was associated with a nearly 7.5-fold increased risk of death from recurring breast cancer. The new research now provides a mechanism to explain why Stat5 may be a useful tumor marker to predict risk and outcome in early stage breast cancer patients.

Amy DeMaria | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>