Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stat5 protein inhibits spread of breast cancer cells

04.02.2005


The presence of a protein known as Stat5 prevents laboratory-grown breast cancer cells from becoming invasive and aggressive, according to new research from Georgetown University. The research, which appears in the January 27 issue of Oncogene, could one day lead to advanced therapies for breast cancer patients.



"This new insight is significant because it is the invasive behavior of breast cancer cells that leads to the formation of metastatic cancer, the most advanced and serious form of the disease," said Hallgeir Rui, MD, PhD, associate professor of oncology, Lombardi Comprehensive Cancer Center at Georgetown University and principal investigator of the study.

The research, which was funded by the National Institutes of Health and the Department of Defense, showed that when Stat5 was active, breast cancer cells were not only less invasive, but also aggregated into clusters, resembling healthy breast cells. Conversely, loss of Stat5 stimulated invasive tumor cell activities.


"The apparent suppressive role of Stat5 in breast cancer is surprising in light of the tumor promoting role that Stat5 appears to play in leukemias, lymphomas, and prostate cancer," said Rui. "On the other hand, the new data may not be so unexpected since Stat5 is known to promote differentiation of healthy breast cells. Differentiation is a form of orderliness that is gradually lost as cancer cells become more aggressive and invasive."

Stat5 is a DNA-binding protein that regulates expression of certain genes, many of which remain unknown. During pregnancy, Stat5 is activated by the hormone prolactin, and stimulates milk production in the breast. In related research, Rui and colleagues have recently shown that Stat5 remains active in healthy breast cells in non-pregnant women. However, active Stat5 is lost in many breast cancers, especially as the tumors become more aggressive and metastatic.

Rui cautions that this research was done with cancer cells cultured in the laboratory and that additional studies are needed to determine whether Stat5 also inhibits invasion of human breast cancer cells tested in mice. These studies are underway and the outcome will determine whether new therapies could be designed to one day take advantage of the invasion-suppressive role of Stat5 in breast cancer. Because Stat5 is a protein that is located inside the cell, it cannot be administered in the form of injections to slow down breast tumor cells. However, Rui’s laboratory is exploring alternative ways of switching Stat5 back on in breast cancer.

The results of this study support related research done last year by Rui and his colleagues: In a study that was published in the June 1, 2004 issue of the Journal of Clinical Oncology, the team identified Stat5 as a biomarker of a type of breast cancer that is associated with a favorable prognosis in patients. In fact, in breast cancer patients whose tumors had not yet spread to the nearby lymph nodes, loss of Stat5 was associated with a nearly 7.5-fold increased risk of death from recurring breast cancer. The new research now provides a mechanism to explain why Stat5 may be a useful tumor marker to predict risk and outcome in early stage breast cancer patients.

Amy DeMaria | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>