Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell research signals cancer hope

04.02.2005


Scientists have moved a step closer to understanding what happens when cells receive a faulty signal that is known to be a cause of cancer.



Many different types of signal control normal cell development but when some of these signals are ‘mis-activated’ they can result in the formation of tumours. Now, a team of researchers at The University of Manchester has discovered that the way cells communicate with each other is often more complicated than previously thought.

The breakthrough should help in the fight against cancer as understanding how these signals work in healthy cells means scientists can better investigate what happens when the signal goes wrong. Dr Martin Baron, who led the research, said the discovery could take scientists down a new route in their battle against the disease.


Dr Baron’s research, published in the science journal Current Biology, has been concerned with signals that are picked up by a receptor on the surface of the cell known as ‘Notch’, which has been linked to a form of leukaemia called T-ALL.

The Notch receptor, of which there are four types in humans, is unusual in that once it has picked up a signal, it splits into two and part of it actually becomes the signal on its journey to the cell nucleus. What Dr Baron has discovered is that the journey taken by the Notch signal to the nucleus is not as straightforward as scientists first believed. “Our studies have shown how the signal should work normally and how it can be mis-activated,” explained Dr Baron. “If the signal is mis-activated it can cause cancer, so it is important that we know why it can go wrong and find out how to stop it.

“Once we know the process of how the wrong signal is sent and the cell is mis-activated, we can look at the possibility of manipulating the signal or switching it off completely.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>