Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell research signals cancer hope

04.02.2005


Scientists have moved a step closer to understanding what happens when cells receive a faulty signal that is known to be a cause of cancer.



Many different types of signal control normal cell development but when some of these signals are ‘mis-activated’ they can result in the formation of tumours. Now, a team of researchers at The University of Manchester has discovered that the way cells communicate with each other is often more complicated than previously thought.

The breakthrough should help in the fight against cancer as understanding how these signals work in healthy cells means scientists can better investigate what happens when the signal goes wrong. Dr Martin Baron, who led the research, said the discovery could take scientists down a new route in their battle against the disease.


Dr Baron’s research, published in the science journal Current Biology, has been concerned with signals that are picked up by a receptor on the surface of the cell known as ‘Notch’, which has been linked to a form of leukaemia called T-ALL.

The Notch receptor, of which there are four types in humans, is unusual in that once it has picked up a signal, it splits into two and part of it actually becomes the signal on its journey to the cell nucleus. What Dr Baron has discovered is that the journey taken by the Notch signal to the nucleus is not as straightforward as scientists first believed. “Our studies have shown how the signal should work normally and how it can be mis-activated,” explained Dr Baron. “If the signal is mis-activated it can cause cancer, so it is important that we know why it can go wrong and find out how to stop it.

“Once we know the process of how the wrong signal is sent and the cell is mis-activated, we can look at the possibility of manipulating the signal or switching it off completely.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>