Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell research signals cancer hope

04.02.2005


Scientists have moved a step closer to understanding what happens when cells receive a faulty signal that is known to be a cause of cancer.



Many different types of signal control normal cell development but when some of these signals are ‘mis-activated’ they can result in the formation of tumours. Now, a team of researchers at The University of Manchester has discovered that the way cells communicate with each other is often more complicated than previously thought.

The breakthrough should help in the fight against cancer as understanding how these signals work in healthy cells means scientists can better investigate what happens when the signal goes wrong. Dr Martin Baron, who led the research, said the discovery could take scientists down a new route in their battle against the disease.


Dr Baron’s research, published in the science journal Current Biology, has been concerned with signals that are picked up by a receptor on the surface of the cell known as ‘Notch’, which has been linked to a form of leukaemia called T-ALL.

The Notch receptor, of which there are four types in humans, is unusual in that once it has picked up a signal, it splits into two and part of it actually becomes the signal on its journey to the cell nucleus. What Dr Baron has discovered is that the journey taken by the Notch signal to the nucleus is not as straightforward as scientists first believed. “Our studies have shown how the signal should work normally and how it can be mis-activated,” explained Dr Baron. “If the signal is mis-activated it can cause cancer, so it is important that we know why it can go wrong and find out how to stop it.

“Once we know the process of how the wrong signal is sent and the cell is mis-activated, we can look at the possibility of manipulating the signal or switching it off completely.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>