Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased risk of osteoporosis associated with gene that one in five people have

02.02.2005


About nineteen percent of people have a genetic variation that may increase susceptibility to osteoporosis, a new study reveals. Researchers at Washington University School of Medicine in St. Louis demonstrated that in women the variant gene speeds up the breakdown of estrogen and is associated with low density in the bones of the hip.



The study will be reported in the February issue of the Journal of Bone and Mineral Research and is available online.

The gene, named CYP1A1, makes an abundant enzyme that detoxifies foreign substances and also breaks down estrogen as a normal part of maintaining proper estrogen balance. Within the general population, several variations of the CYP1A1 gene exist, and the variants differ from one another by one or more DNA base pairs. "Previous studies showed that some CYP1A1 variants are linked to estrogen-related cancers, such as breast, ovarian or endometrial cancers," says Reina Armamento-Villareal, M.D., assistant professor of medicine in the Division of Bone and Mineral Diseases. "The link to estrogen suggested that the gene could also affect bone density. No one had ever investigated that possibility, so we set up a study to evaluate the relation between bone density and variations of the CYP1A1 gene."


The researchers studied 156 women with an average age of 63.5 years who were at least one year past menopause. They analyzed the genetic sequence of each woman’s CYP1A1 gene to identify which of the genetic variants they possessed.

One of the variations of the gene, known to be present in 19 percent of the general population, was found in women who had significantly lower blood estrogen levels and higher levels of urinary estrogen breakdown products than normal. These women also had a higher than normal urinary concentration of a marker that indicates bone resorption and had significantly lower than normal bone density in regions of the upper femur near the hip joint. "The data suggest that this particular variation of the gene produces an enzyme that breaks down estrogen faster than usual, leading to low serum estrogen levels and high levels of estrogen metabolites," Villareal says. "Low levels of estrogen put a woman at risk for osteoporosis, and our data showed a strong correlation between the genetic variant and low bone density."

The research team measured bone density in both the spine and the upper femur. The bone mass of the spine proved not to be affected by genetic variation in CYP1A1. "Our study suggests that this genetic variant specifically affects the hip bones," Villareal says. "For those with this form of the CYP1A1 gene, that’s not good news. Low density in the hip can lead to hip fractures, which can be devastating."

Recent statistics from the National Osteoporosis Foundation estimate that more than 20 percent of hip fracture patients die within a year. Additionally, about 30 percent of hip fracture patients will fracture the opposite hip, up to 25 percent may require long-term nursing home care and only 40 percent fully regain their prefracture level of independence.

Given the seriousness of the condition, Villareal asserts it would be very advantageous to identify those people at especially high risk for osteoporosis of the hip. The CYP1A1 variant that the researchers linked to osteoporosis may be an important genetic marker for evaluating that risk. "Ideally, you want to start early to avoid osteoporosis," Villareal says. "Our next study will look at a much younger group of women. My guess is that we will find that females with this variant gene are breaking down estrogen rapidly from the day they are born. In that case, they would never achieve an adequate peak bone density and would lose even more bone mass after menopause. If we can catch them at an early age, we can maximize their chances to avoid osteoporosis."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>