# Forum for Science, Industry and Business

Search our Site:

## How Many Comparative Genomes Are Enough?

31.01.2005

As the human genome sequence neared completion several years ago, geneticists eagerly began discussing which other organisms to sequence — partly to see which DNA regions are similar across species and therefore likely to serve critical functions. But these discussions raised an important, and potentially expensive, question: How many species need to be sequenced to know whether evolution has conserved a given stretch of DNA?

In an article published in the January 2005 issue of PLoS Biology, Sean R. Eddy, a Howard Hughes Medical Institute investigator at Washington University School of Medicine in St. Louis, describes a mathematical model that offers detailed answers to this question. “We shouldn’t make these decisions based on seat-of-the-pants intuitions,” Eddy said. “It’s important to lay out the case that these genomes really do have tremendous value for analyzing the human genome sequence.”

According to Eddy’s model, critical tradeoffs are associated with deciding which species to sequence. More species need to be compared to tell if just one or a few DNA bases are conserved, compared to what is needed to identify longer stretches of conserved DNA. Also, the more closely related a group of organisms is in evolutionary terms, the more comparisons need to be made to tell if a given DNA region is conserved across species.

Previous analyses had indicated that 10 to 20 well-chosen mammalian genomes would be enough to determine whether any given nucleotide is conserved with an error rate of less than 1 in 100. But this estimate does not take into account that nucleotides need not remain exactly the same over time to be conserved between species, Eddy points out. Furthermore, deciding that a single base is conserved is not necessarily the most appropriate goal. According to Eddy, it would be more useful to figure out if longer stretches of DNA are conserved, such as sections of genes or binding sites in DNA for proteins that control gene expression.

Eddy constructed a mathematical model that takes into account the length of a conserved DNA region, the number of different species sequenced, and their evolutionary distance. His model assumes that conserved nucleotides do not necessarily stay the same but evolve at a slower rate than nucleotides that are not conserved.

The model finds, in accordance with previous results, that detecting invariant single nucleotides would require comparing about 17 genomes separated by the average evolutionary distance between humans and mice. But when conserved nucleotides are allowed to change in a more realistic way, 25 genomes are needed instead. To reduce the error rate from 1 in 100 to 1 in 10,000, about 120 such genomes should be compared.

However, far fewer genomes are needed to detect conserved features larger than a single nucleotide. For parts of genes about 50 nucleotides long, only a single comparison is needed, and even for gene segments eight or so nucleotides long (such as binding sites for transcription factors), 3 to 15 genomes are needed.

The model holds up well when applied to simulations of realistic nucleotide evolution patterns. It also accurately predicts results derived from existing genome comparisons.

“No one had actually written out the case for why we are proposing to sequence the koala and the bat and the platypus,” Eddy said. “This is one way of showing that, yes, you need a fair amount of statistical information from these comparative genomes.”

Eddy “did a nice job of making the intuitive rigorous,” said Philip Green, an HHMI investigator at the University of Washington in Seattle. His work “will be useful in guiding people’s thinking about how to use comparative data and how much data you need.”

Eddy took the unusual step of publishing a conflict-of-interest statement in his article in PLoS Biology that notes that he is associated with a genome sequencing center. “I was very conscious of conflict of interest considerations,” he said. “Here I am sitting at a genome sequencing center saying that we need 100 genomes, not one. . . . But it’s important for programmatic decisions that we try to do more modeling and pilot studies so that we can justify these millions of dollars spent on sequencing.”

Further information:
http://www.hhmi.org

### More articles from Life Sciences:

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

### Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

### Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

### Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

### Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

### Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige