Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Many Comparative Genomes Are Enough?

31.01.2005


As the human genome sequence neared completion several years ago, geneticists eagerly began discussing which other organisms to sequence — partly to see which DNA regions are similar across species and therefore likely to serve critical functions. But these discussions raised an important, and potentially expensive, question: How many species need to be sequenced to know whether evolution has conserved a given stretch of DNA?



In an article published in the January 2005 issue of PLoS Biology, Sean R. Eddy, a Howard Hughes Medical Institute investigator at Washington University School of Medicine in St. Louis, describes a mathematical model that offers detailed answers to this question. “We shouldn’t make these decisions based on seat-of-the-pants intuitions,” Eddy said. “It’s important to lay out the case that these genomes really do have tremendous value for analyzing the human genome sequence.”

According to Eddy’s model, critical tradeoffs are associated with deciding which species to sequence. More species need to be compared to tell if just one or a few DNA bases are conserved, compared to what is needed to identify longer stretches of conserved DNA. Also, the more closely related a group of organisms is in evolutionary terms, the more comparisons need to be made to tell if a given DNA region is conserved across species.


Previous analyses had indicated that 10 to 20 well-chosen mammalian genomes would be enough to determine whether any given nucleotide is conserved with an error rate of less than 1 in 100. But this estimate does not take into account that nucleotides need not remain exactly the same over time to be conserved between species, Eddy points out. Furthermore, deciding that a single base is conserved is not necessarily the most appropriate goal. According to Eddy, it would be more useful to figure out if longer stretches of DNA are conserved, such as sections of genes or binding sites in DNA for proteins that control gene expression.

Eddy constructed a mathematical model that takes into account the length of a conserved DNA region, the number of different species sequenced, and their evolutionary distance. His model assumes that conserved nucleotides do not necessarily stay the same but evolve at a slower rate than nucleotides that are not conserved.

The model finds, in accordance with previous results, that detecting invariant single nucleotides would require comparing about 17 genomes separated by the average evolutionary distance between humans and mice. But when conserved nucleotides are allowed to change in a more realistic way, 25 genomes are needed instead. To reduce the error rate from 1 in 100 to 1 in 10,000, about 120 such genomes should be compared.

However, far fewer genomes are needed to detect conserved features larger than a single nucleotide. For parts of genes about 50 nucleotides long, only a single comparison is needed, and even for gene segments eight or so nucleotides long (such as binding sites for transcription factors), 3 to 15 genomes are needed.

The model holds up well when applied to simulations of realistic nucleotide evolution patterns. It also accurately predicts results derived from existing genome comparisons.

“No one had actually written out the case for why we are proposing to sequence the koala and the bat and the platypus,” Eddy said. “This is one way of showing that, yes, you need a fair amount of statistical information from these comparative genomes.”

Eddy “did a nice job of making the intuitive rigorous,” said Philip Green, an HHMI investigator at the University of Washington in Seattle. His work “will be useful in guiding people’s thinking about how to use comparative data and how much data you need.”

Eddy took the unusual step of publishing a conflict-of-interest statement in his article in PLoS Biology that notes that he is associated with a genome sequencing center. “I was very conscious of conflict of interest considerations,” he said. “Here I am sitting at a genome sequencing center saying that we need 100 genomes, not one. . . . But it’s important for programmatic decisions that we try to do more modeling and pilot studies so that we can justify these millions of dollars spent on sequencing.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>