Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia researcher identifies cellular defect that may contribute to autism

31.01.2005


Defect in neuroligin gene disrupts firing of neurons and may result in autism



The causes of autism have long remained a mystery, but new research from Columbia University Medical Center has identified, for the first time, how a cellular defect may be involved in the often crippling neurological disorder.

The research, which is published in today’s issue of Science, examines how a defect in neuroligin genes may contribute to autism. Neuroligins are components of synapses, which connect individual neurons in the brain. The researchers found that the loss of neuroligins perturbs the formation of neuronal connections and results in an imbalance of neuronal function. This imbalance provides an explanation for the neurodevelopmental defects in autistic children.


"Understanding the cellular defects that may underlie autism-spectrum disorders represents an important step towards the goal of providing therapies," said Peter Scheiffele, Ph.D., assistant professor of physiology and cellular biophysics at Columbia University Medical Center, and principal investigator on the study.

A defect in the neuroligin genes had previously been observed in autistic patients, but its functional significance was not yet understood. Scheiffele’s study showed that in rat neurons without any neuroligin, connections between neurons are altered in a way that is strikingly similar to those found in autistic children.

Each neuron in the brain receives many different inputs – some are excitatory and signal the neuron to fire, and some are inhibitory and signal the neuron to stop firing. Scheiffele’s research team found that neuroligin genes are responsible for regulating the balance between excitatory and inhibitory synaptic function. A defect in neuroligin leads to a selective loss in inhibitory function and thereby impairs the fine-tuning of neuronal connectivity, a neurological problem that is understood to play a role in autism.

"There is much we still don’t know about how neurons connect to each other, but our findings have provided unique insights into what may be going wrong on a cellular level in autistic patients," said Dr. Scheiffele.

Craig LeMoult | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>