Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia researcher identifies cellular defect that may contribute to autism

31.01.2005


Defect in neuroligin gene disrupts firing of neurons and may result in autism



The causes of autism have long remained a mystery, but new research from Columbia University Medical Center has identified, for the first time, how a cellular defect may be involved in the often crippling neurological disorder.

The research, which is published in today’s issue of Science, examines how a defect in neuroligin genes may contribute to autism. Neuroligins are components of synapses, which connect individual neurons in the brain. The researchers found that the loss of neuroligins perturbs the formation of neuronal connections and results in an imbalance of neuronal function. This imbalance provides an explanation for the neurodevelopmental defects in autistic children.


"Understanding the cellular defects that may underlie autism-spectrum disorders represents an important step towards the goal of providing therapies," said Peter Scheiffele, Ph.D., assistant professor of physiology and cellular biophysics at Columbia University Medical Center, and principal investigator on the study.

A defect in the neuroligin genes had previously been observed in autistic patients, but its functional significance was not yet understood. Scheiffele’s study showed that in rat neurons without any neuroligin, connections between neurons are altered in a way that is strikingly similar to those found in autistic children.

Each neuron in the brain receives many different inputs – some are excitatory and signal the neuron to fire, and some are inhibitory and signal the neuron to stop firing. Scheiffele’s research team found that neuroligin genes are responsible for regulating the balance between excitatory and inhibitory synaptic function. A defect in neuroligin leads to a selective loss in inhibitory function and thereby impairs the fine-tuning of neuronal connectivity, a neurological problem that is understood to play a role in autism.

"There is much we still don’t know about how neurons connect to each other, but our findings have provided unique insights into what may be going wrong on a cellular level in autistic patients," said Dr. Scheiffele.

Craig LeMoult | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>