Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cherie Booth QC opens world-leading genomics research facility at CCLRC Daresbury Laboratory

31.01.2005


Cherie Booth QC today opened a world-leading facility at CCLRC Daresbury Laboratory which is designed to understand how genes make proteins. The £3 million facility will use powerful X-rays from Daresbury Laboratory’s Synchrotron Radiation Source and advanced automation techniques to solve complex protein structures. This will underpin advances in research and healthcare.



The facility, a new beamline on Daresbury Laboratory’s Synchrotron Radiation Source (SRS), is a collaboration between the Laboratory and Liverpool John Moores, Liverpool and Manchester Universities, Astra Zeneca and Astex Technology.

Cherie Booth QC, Chancellor of Liverpool John Moores University, said, ‘I am delighted to open this world-leading research tool. Advanced facilities of this kind are vital if the UK is to take a lead in using the information contained in our genes to develop new medicines and improve the quality of life for millions around the world.’


The information contained in the genes of living organisms is a blueprint to allow a cell to make a protein. Proteins are the workhorses of the cell and carry out the essential functions that keep us alive. Where genes are faulty through, for example, inherited disease then they can make proteins which either don’t work or don’t work correctly. In order to develop medicines to treat these diseases researchers need to know the three-dimensional structure of the proteins at atomic detail. It is this essential information which the new structural genomics facility at Daresbury Laboratory will provide.

Professor Samar Hasnain, co-ordinator for the North West Structural Genomics Centre, said, ‘In addition to work on genetic diseases, this world-leading facility will allow us to begin to translate gene sequences directly into protein structures – an essential step for understanding the biology of how pathogens affect humans. Many of these protein structures could become future targets for new drugs and medical treatments.’

Tony Buckley | alfa
Further information:
http://www.cclrc.ac.uk

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>