Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Scientists Uncover Inner Workings of Rare Eye Cells

27.01.2005


A Brown University team has found that a protein called melanopsin plays a key role in the inner workings of mysterious, spidery cells in the eye called intrinsically photosensitive retinal ganglion cells, or ipRGCs.


Visual clues to daily rhythms - Intrinsically photosensitive retinal ganglion cells – ipRGCs, right – were discovered in 2002. New research shows that the protein melanopsin enables ipRGCs to do their job of setting the body’s master circadian clock. It may be an extremely ancient system in terms of evolution, researchers say.



Melanopsin, they found, absorbs light and triggers a biochemical cascade that allows the cells to signal the brain about brightness. Through these signals, ipRGCs synchronize the body’s daily rhythms to the rising and setting of the sun. This circadian rhythm controls alertness, sleep, hormone production, body temperature and organ function. Brown researchers, led by neuroscientist David Berson, announced the discovery of ipRGCs in 2002. Their work was astonishing: Rods and cones aren’t the only light-sensitive eye cells.

Like rods and cones, ipRGCs turn light energy into electrical signals. But while rods and cones aid sight by detecting objects, colors and movement, ipRGCs gauge overall light intensity. Numbering only about 1,000 to 2,000 out of millions of eyes cells, ipRGCs are different in another way: They have a direct link to brain, sending a message to the tiny region that controls the body clock about how light or dark the environment is. The cells are also responsible for narrowing the pupil of the eye.


“It’s a general brightness detection system in the eye,” said Berson, the Sidney A. Fox and Dorothea Doctors Fox Professor of Ophthalmology and Visual Sciences. “What we’ve done now is provide more details about how this system works.”

The research, published in the current issue of Nature, provides the first evidence that melanopsin is a functional sensory photopigment. In other words, this protein absorbs light and sets off a chain of chemical reactions in a cell that triggers an electrical response. The study also showed that melanopsin plays this role in ganglion-cell photoreceptors, helping them send a powerful signal to the brain that it is day or night.

The team made the discovery by inserting melanopsin into cells taken from the kidneys and grown in culture. These cells, which are not normally sensitive to light, were transformed into photoreceptors when flooded with melanopsin. In fact, the kidney cells responded to light almost exactly the way ipRGCs do, confirming that melanopsin is the photopigment for ganglion-cell photoreceptors. “This resolves a key question about the function of these cells,” Berson said. “And so little is known about them, anything we learn is important.”

Berson and his team made another intriguing finding: The biochemical cascade sparked by melanopsin is closer to that of eye cells in invertebrates like fruit flies and squid than in spined animals such as mice, monkeys or humans. “The results may well tell us that this is an extremely ancient system in terms of evolution,” Berson said. “We may have a bit of the invertebrate in our eyes.”

The research team from Brown included lead author and post-doctoral research associate Xudong Qiu and post-doctoral research associate Kwoon Wong, both in the Department of Neuroscience, as well as graduate students Stephanie Carlson and Vanitha Krishna in the Neuroscience Graduate Program. Tida Kumbalasiri and Ignacio Provencio from the Uniformed Services University of the Health Sciences also contributed to the research.

The National Institutes of Health funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>