Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Scientists Uncover Inner Workings of Rare Eye Cells

27.01.2005


A Brown University team has found that a protein called melanopsin plays a key role in the inner workings of mysterious, spidery cells in the eye called intrinsically photosensitive retinal ganglion cells, or ipRGCs.


Visual clues to daily rhythms - Intrinsically photosensitive retinal ganglion cells – ipRGCs, right – were discovered in 2002. New research shows that the protein melanopsin enables ipRGCs to do their job of setting the body’s master circadian clock. It may be an extremely ancient system in terms of evolution, researchers say.



Melanopsin, they found, absorbs light and triggers a biochemical cascade that allows the cells to signal the brain about brightness. Through these signals, ipRGCs synchronize the body’s daily rhythms to the rising and setting of the sun. This circadian rhythm controls alertness, sleep, hormone production, body temperature and organ function. Brown researchers, led by neuroscientist David Berson, announced the discovery of ipRGCs in 2002. Their work was astonishing: Rods and cones aren’t the only light-sensitive eye cells.

Like rods and cones, ipRGCs turn light energy into electrical signals. But while rods and cones aid sight by detecting objects, colors and movement, ipRGCs gauge overall light intensity. Numbering only about 1,000 to 2,000 out of millions of eyes cells, ipRGCs are different in another way: They have a direct link to brain, sending a message to the tiny region that controls the body clock about how light or dark the environment is. The cells are also responsible for narrowing the pupil of the eye.


“It’s a general brightness detection system in the eye,” said Berson, the Sidney A. Fox and Dorothea Doctors Fox Professor of Ophthalmology and Visual Sciences. “What we’ve done now is provide more details about how this system works.”

The research, published in the current issue of Nature, provides the first evidence that melanopsin is a functional sensory photopigment. In other words, this protein absorbs light and sets off a chain of chemical reactions in a cell that triggers an electrical response. The study also showed that melanopsin plays this role in ganglion-cell photoreceptors, helping them send a powerful signal to the brain that it is day or night.

The team made the discovery by inserting melanopsin into cells taken from the kidneys and grown in culture. These cells, which are not normally sensitive to light, were transformed into photoreceptors when flooded with melanopsin. In fact, the kidney cells responded to light almost exactly the way ipRGCs do, confirming that melanopsin is the photopigment for ganglion-cell photoreceptors. “This resolves a key question about the function of these cells,” Berson said. “And so little is known about them, anything we learn is important.”

Berson and his team made another intriguing finding: The biochemical cascade sparked by melanopsin is closer to that of eye cells in invertebrates like fruit flies and squid than in spined animals such as mice, monkeys or humans. “The results may well tell us that this is an extremely ancient system in terms of evolution,” Berson said. “We may have a bit of the invertebrate in our eyes.”

The research team from Brown included lead author and post-doctoral research associate Xudong Qiu and post-doctoral research associate Kwoon Wong, both in the Department of Neuroscience, as well as graduate students Stephanie Carlson and Vanitha Krishna in the Neuroscience Graduate Program. Tida Kumbalasiri and Ignacio Provencio from the Uniformed Services University of the Health Sciences also contributed to the research.

The National Institutes of Health funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>