Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvard scientists discover how the venus flytrap snaps

27.01.2005


A team of applied mathematicians, physicists, and biologists has discovered how the Venus flytrap snaps up its prey in a mere tenth of a second by actively shifting the curved shape of its mouth-like leaves. Their study, published in the Jan. 27 issue of the journal Nature, investigates the series of events that occur from the time the plant’s leaves are stimulated to the time the trap is clamped shut.


Superposition of the open and closed leaves of the Venus flytrap. The glass needle in the foreground was used to trigger the closure. Note that the leaves flip by almost turning inside out - similar to the flipping of a contact lens, plastic lid or the reversal of a torn tennis ball. Courtesy of Forterre and Mahadevan.



"Our work complements prior research," says Lakshminarayanan Mahadevan, Gordon McKay Professor of Applied Mathematics and Mechanics in Harvard University’s Division of Engineering and Applied Sciences and affiliate in the Department of Organismic and Evolutionary Biology in Harvard’s Faculty of Arts and Sciences. "In addition to looking at biochemical events, we looked at what happened after the plant was stimulated and found that the rapid closing is due to a ’snap-buckling instability’ that the plant itself controls."

To trap its prey, the carnivorous plant relies on both an active biochemical and a passive elastic process, say Mahadevan and former students and postdocs Yoël Forterre, Jan M. Skotheim, and Jacques Dumais. When an insect brushes up against a hair trigger, the plant responds by moving water to actively change the curvature of its leaves. While exactly how the water is moved is not completely understood, the scientists observed that the deformation of the leaves, once stimulated, provided the means by which elastic energy was stored and released, creating a simple yet effective jaw-like movement.


"In essence, a leaf stretches until reaching a point of instability where it can no longer maintain the strain," Mahadevan says. "Like releasing a reversed plastic lid or part of a cut tennis ball, each leaf folds back in on itself, and in the process of returning to its original shape, ensnares the victim in the middle. The hydrated nature of the leaf quickly dampens the vibrations caused by the movement, so the unlucky bug doesn’t spill out. It then takes the plant up to eight hours to ready its leaves for the next unsuspecting bug."

To reveal how the Venus flytrap snaps, the researchers painted ultraviolet fluorescent dots on the external face of the leaves and filmed them under ultraviolet light using high-speed video. By using mirrors to record stereo images of the process, they were able to reconstruct the geometry of the leaf. Finally, a simple mathematical model provided them with a way to understand the quantitative and qualitative aspects of snapping such as when the plant snaps, how long it takes before it goes into action once stimulated, and how fast the entire process happens.

"Our explanation relied on interplay between theory and experiment, and on the interdisciplinary interests and nature of our group, with expertise ranging from applied math and physics to biology," Mahadevan says.

In addition to shedding light on an age-old riddle involving a plant Charles Darwin called "one of the most wonderful in the world," the discovery has implications for biomimetic systems. One day, engineers might be able to emulate the plant’s ingenious alternative to muscle-powered movements in tiny artificial devices, such as those that control the flow of minute amounts of liquids or gases. Common applications that already use related technology include valves and switches in microfluidic devices, hydraulic sensors and actuators and timed-release drug delivery mechanisms.

Prior explanations of Venus flytrap operation have cited a loosening of cell walls combined with a quick loss of cellular pressure, but it had not been clear how these cellular mechanisms alone could produce the lightning-fast closure of the entire leaf.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu
http://www.deas.harvard.edu/research/Venusflytrap.html.

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>