Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find local environment directly influences adult stem cell reservoirs

26.01.2005


Using the common fruit fly, researchers at UT Southwestern Medical Center have discovered that an intricate set of signals released by stem cells’ surroundings governs their maintenance.



These findings, available online and in today’s issue of Current Biology, will aid stem cell researchers in understanding and potentially manipulating the delicate environments that promote adult stem cell formation, said Dr. Dennis McKearin, associate professor of molecular biology and associate dean for the Medical Scientist Training Program at UT Southwestern and senior author of the study. "We want to understand the biochemistry behind stem cells that distinguishes them from other types of cells," Dr. McKearin said. "This work aids in understanding general stem cell biology."

The reproductive system of the female fruit fly, as in humans, contains a reservoir of adult stem cells. When the stem cells divide, they create two daughter cells, each with a distinct fate. One daughter travels away from the reservoir, divides further, and eventually becomes the egg and ’nurse’ cells, which nourish the egg.


The other daughter stays near the other stem cells and is influenced by the local environment to remain a stem cell, thereby maintaining the stem cell population. Dr. McKearin’s research shows that within the local environment, or niche, of the stem cell population, stromal cells, the non-stem cells that surround and attach to stem cells, release signals that are received and processed by stem cells and the daughters remaining in the niche. These molecular signals block certain genes from becoming active in the remaining stem cell daughters, preventing them from becoming any other kind of cell.

Genes controlling differentiation are turned off in some stem cell daughters but turned on in others, which move too far away to be influenced. Thus they develop into the egg and nurse cells. The success of this cell-to-cell communication is crucial. When the signals from the stromal cells are blocked, the stem cell population is gradually lost. When the signals are on all the time, or specific genes in the daughter cells are mutated, every daughter cell acts like a stem cell and the future eggs are lost.

"That stem cells are maintained by blocking gene expression suggests that the microenvironment, or niche, captures the cells and prevents them from differentiating," Dr. McKearin said. "Cells that are poised to differentiate do not, simply because of their niche."

Dr. McKearin said that in addition to their influence on stem cells, local environments or niches may influence the spread of cancer. "Specific types of cancer often metastasize to specific other organs," he said. "For example, prostate cancer cells that respond to certain growth factors may metastasize to bone, but not liver, because they can respond to external factors in the bone niche, but not the liver niche."

The other contributor to this study is Dr. Dahua Chen, instructor in molecular biology at UT Southwestern and lead author.

The study was funded by the National Institutes of Health.

Megha Satyanarayana | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>