Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interaction between stem cells and their niches key to differentiation

26.01.2005


Duke University Medical Center cell biologists have defined a signaling system between stem cells and the specialized "niche cells" that harbor and regulate them. The findings provide better understanding of the signals that stimulate stem cells to either create more copies of themselves or to differentiate into another cell type, said the researchers.



Germline stem cells are immature cells in the reproductive system that can proliferate and mature into sperm and eggs. While it is has been appreciated that these stem cells exist in a microenvironment attached niche cells, it has not been well understood how these two cell types communicate.

In their latest study, the results of which were published in the Jan. 26, 2005, issue of the journal Current Biology, the Duke team reported that regulatory genes from niche cells instruct genes in stem cells to determine the future path of the stem cells. Both niche and stem cells possess genes which produce proteins that act as a series of "on-off" switches for stem cell division, the researchers said. The research was supported by the National Institutes of Health.


Over-proliferation of stem cells is one of the leading causes of cancer, while reduced stem cell production is implicated in such disorders as infertility, anemia and immune system deficiencies. It is important to understanding how stem cells receive their cues to differentiate, the researchers continued, because any potential future clinical application of stem cells cannot focus on them alone, but must also take into account the role of niche cells.

For their experiments, researchers led by Duke cell biologist Haifan Lin, Ph.D. studied germline stem cells from the ovaries of the common fruit fly Drosophila. They analyzed the expression of specific genes as the germline stem cells either created additional copies of themselves or differentiated into another cell type known as a cystoblast, which eventually become mature eggs. "We found that stem cells behavior is regulated by the neighboring niche cells, which provide an idyllic hideaway essential to the functioning of the stem cells," Lin said. "Stem cell division is an asymmetric process. After division, one daughter cell remains attached to the niche cell and thus remains as a stem cell, whereas the other daughter cells is detached from niche cells and will thus acquire a different fate."

Lin’s team determined three different genes -- piwi, pumilio (pum) and bam (bag of marbles) – that mediate the interplay between stem cells and niche cells that controls stem cell fate. It has been known that piwi and pum must be activated for successful self-renewal of germline stem cells, while bam is essential for cystoblast differentiation. Piwi, initially discovered in the Lin lab, is the founding member of a family of genes involved in the development stem cells in diverse organisms in both animal and plant kingdoms. pum- and bam-like genes also exist in mammals and humans. "In our experiments we demonstrated that piwi and bam proteins are expressed independently of each other in reciprocal patterns in germline stem cells and cystoblasts," Lin said. "However, overexpression of either one of these genes antagonizes the action of the other in these cells, acting as on-off switches."

According to their new model of niche cell-germline stem cell interaction, activation of the piwi gene in niche cells leads to the production of proteins that block the expression of bam in germline stem cells. The absence of an active bam gene causes pum, and other genes in the stem cells, to become active. The pum gene then prevents the production of proteins involved in differentiation. "The result of this sequence of events is the suppression of differentiation, which maintains the fate of the cell as a germline stem cell," Lin said.

In the cystoblast cell, the signal from piwi is no longer effective because this cell is detached from niche cells, which allows for the expression of the bam gene, which in turn represses the activity of pum, allowing the cell to differentiate. "Therefore, pum can be considered as the switch between self-renewal or differentiation, and signaling from niche cells through bam regulates this switch at the single cell level," Lin explained.

As they have done in their previous studies using the Drosophila model, Lin’s team is also using the mouse model to determine whether or not the same signaling pathways are present in higher organisms. Interestingly, they said, while the piwi gene plays an important role in determining germline stem cell differentiation in Drosophila, its equivalent in mice, miwi, has been shown to be the key gene involved in development of sperm cells. In humans, Lin’s team discovered in 2002 that overexpression of the hiwi gene, a piwi-like gene in human, has been implicated in the development of a common form of testicular cancer, while underexpression can lead to infertility.

First authors of the paper were Akos Szakmary, Ph.D., Duke, and Daniel Cox, Ph.D., now at George Mason University, Manassas, VA.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>