Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interaction between stem cells and their niches key to differentiation

26.01.2005


Duke University Medical Center cell biologists have defined a signaling system between stem cells and the specialized "niche cells" that harbor and regulate them. The findings provide better understanding of the signals that stimulate stem cells to either create more copies of themselves or to differentiate into another cell type, said the researchers.



Germline stem cells are immature cells in the reproductive system that can proliferate and mature into sperm and eggs. While it is has been appreciated that these stem cells exist in a microenvironment attached niche cells, it has not been well understood how these two cell types communicate.

In their latest study, the results of which were published in the Jan. 26, 2005, issue of the journal Current Biology, the Duke team reported that regulatory genes from niche cells instruct genes in stem cells to determine the future path of the stem cells. Both niche and stem cells possess genes which produce proteins that act as a series of "on-off" switches for stem cell division, the researchers said. The research was supported by the National Institutes of Health.


Over-proliferation of stem cells is one of the leading causes of cancer, while reduced stem cell production is implicated in such disorders as infertility, anemia and immune system deficiencies. It is important to understanding how stem cells receive their cues to differentiate, the researchers continued, because any potential future clinical application of stem cells cannot focus on them alone, but must also take into account the role of niche cells.

For their experiments, researchers led by Duke cell biologist Haifan Lin, Ph.D. studied germline stem cells from the ovaries of the common fruit fly Drosophila. They analyzed the expression of specific genes as the germline stem cells either created additional copies of themselves or differentiated into another cell type known as a cystoblast, which eventually become mature eggs. "We found that stem cells behavior is regulated by the neighboring niche cells, which provide an idyllic hideaway essential to the functioning of the stem cells," Lin said. "Stem cell division is an asymmetric process. After division, one daughter cell remains attached to the niche cell and thus remains as a stem cell, whereas the other daughter cells is detached from niche cells and will thus acquire a different fate."

Lin’s team determined three different genes -- piwi, pumilio (pum) and bam (bag of marbles) – that mediate the interplay between stem cells and niche cells that controls stem cell fate. It has been known that piwi and pum must be activated for successful self-renewal of germline stem cells, while bam is essential for cystoblast differentiation. Piwi, initially discovered in the Lin lab, is the founding member of a family of genes involved in the development stem cells in diverse organisms in both animal and plant kingdoms. pum- and bam-like genes also exist in mammals and humans. "In our experiments we demonstrated that piwi and bam proteins are expressed independently of each other in reciprocal patterns in germline stem cells and cystoblasts," Lin said. "However, overexpression of either one of these genes antagonizes the action of the other in these cells, acting as on-off switches."

According to their new model of niche cell-germline stem cell interaction, activation of the piwi gene in niche cells leads to the production of proteins that block the expression of bam in germline stem cells. The absence of an active bam gene causes pum, and other genes in the stem cells, to become active. The pum gene then prevents the production of proteins involved in differentiation. "The result of this sequence of events is the suppression of differentiation, which maintains the fate of the cell as a germline stem cell," Lin said.

In the cystoblast cell, the signal from piwi is no longer effective because this cell is detached from niche cells, which allows for the expression of the bam gene, which in turn represses the activity of pum, allowing the cell to differentiate. "Therefore, pum can be considered as the switch between self-renewal or differentiation, and signaling from niche cells through bam regulates this switch at the single cell level," Lin explained.

As they have done in their previous studies using the Drosophila model, Lin’s team is also using the mouse model to determine whether or not the same signaling pathways are present in higher organisms. Interestingly, they said, while the piwi gene plays an important role in determining germline stem cell differentiation in Drosophila, its equivalent in mice, miwi, has been shown to be the key gene involved in development of sperm cells. In humans, Lin’s team discovered in 2002 that overexpression of the hiwi gene, a piwi-like gene in human, has been implicated in the development of a common form of testicular cancer, while underexpression can lead to infertility.

First authors of the paper were Akos Szakmary, Ph.D., Duke, and Daniel Cox, Ph.D., now at George Mason University, Manassas, VA.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>