Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify brain regions that decide where we look

26.01.2005


Scientists have found the brain regions that decide where we look, and where to direct our eyes when we’re faced with a difficult choice, such as looking someone straight in the eye or looking away.

According to research published today in Current Biology, the team from Imperial College London and University College London, have found that different areas of the brain are active when we freely select where to look, and when we change our mind and look elsewhere.

Using magnetic resonance imaging (MRI), the researchers discovered two distinct areas within the medial frontal cortex of the brain. One became active when a free choice was made, while the other responded to situations of conflict, when one plan had to be discarded in favour of an alternative.



In the experiment, volunteers were asked to freely shift their eyes while in the MRI scanner, and this resulted in the brain region associated with free choice becoming active. When the volunteers had to change their minds and look elsewhere, a different part of the brain was activated.

Dr Masud Husain from Imperial College London, based at Charing Cross Hospital, said: “This research has revealed the brain regions which decide where we direct our eyes. Sometimes choosing where to look isn’t straightforward. Do you look your boss straight in the eye, or do you decide to look away? Even if you decide to look him in the eye, you might have second thoughts and change our mind - before it’s too late. Different parts of the medial frontal cortex become active when we choose to make an eye movement of our own free will, and when we face a difficult choice involving conflicting alternatives.”

The researchers believe this discovery may also explain why people with damage to the medial frontal cortex often seem incapable of generating actions of their own free will, or choosing between alternative actions.

Tony Stephenson | alfa
Further information:
http://www.imperial.ac.uk.

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>