Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify brain regions that decide where we look

26.01.2005


Scientists have found the brain regions that decide where we look, and where to direct our eyes when we’re faced with a difficult choice, such as looking someone straight in the eye or looking away.

According to research published today in Current Biology, the team from Imperial College London and University College London, have found that different areas of the brain are active when we freely select where to look, and when we change our mind and look elsewhere.

Using magnetic resonance imaging (MRI), the researchers discovered two distinct areas within the medial frontal cortex of the brain. One became active when a free choice was made, while the other responded to situations of conflict, when one plan had to be discarded in favour of an alternative.



In the experiment, volunteers were asked to freely shift their eyes while in the MRI scanner, and this resulted in the brain region associated with free choice becoming active. When the volunteers had to change their minds and look elsewhere, a different part of the brain was activated.

Dr Masud Husain from Imperial College London, based at Charing Cross Hospital, said: “This research has revealed the brain regions which decide where we direct our eyes. Sometimes choosing where to look isn’t straightforward. Do you look your boss straight in the eye, or do you decide to look away? Even if you decide to look him in the eye, you might have second thoughts and change our mind - before it’s too late. Different parts of the medial frontal cortex become active when we choose to make an eye movement of our own free will, and when we face a difficult choice involving conflicting alternatives.”

The researchers believe this discovery may also explain why people with damage to the medial frontal cortex often seem incapable of generating actions of their own free will, or choosing between alternative actions.

Tony Stephenson | alfa
Further information:
http://www.imperial.ac.uk.

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>