Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yellowstone microbes fueled by hydrogen

25.01.2005


Microbes living in the brilliantly colored hot springs of Yellowstone National Park use primarily hydrogen for fuel, a discovery University of Colorado at Boulder researchers say bodes well for life in extreme environments on other planets and could add to understanding of bacteria inside the human body.



A team of CU-Boulder biologists led by Professor Norman Pace, one of the world’s leading experts on molecular evolution and microbiology, published their report "Hydrogen and bioenergetics in the Yellowstone geothermal system" this week in the online edition of the Proceedings of the National Academy of Sciences.

The team’s findings, based on several years of research at the park, refute the popular idea that sulfur is the main source of energy for tiny organisms living in thermal features. "It was a surprise to find hydrogen was the main energy source for microbes in the hot springs," Pace said. "This project is also interesting in the context of microbiology because it’s one of the few times we’ve been able to study microbes to get information on an entire ecosystem. That’s never before been possible."


The study was specifically designed to determine the main source of metabolic energy that drives microbial communities in park features with temperatures above 158 degrees Fahrenheit. Photosynthesis is not known to occur above that temperature.

A combination of three different clues led researchers to conclude that hydrogen was the main source of energy. Genetic analysis of the varieties of microbes living in the hot springs communities revealed that they all prefer hydrogen as an energy source. They also observed ubiquitous H2 in all the hot springs at concentrations sufficient for microbial bioenergetics.

Thermodynamic models based on field data confirmed that hydrogen metabolism was the most likely fuel source in these environments. "This work presents some interesting associated questions," said John Spear, lead author of the report. "Hydrogen is the most abundant element in the universe. If there is life elsewhere, it could be that hydrogen is its fuel," Spear said. "We’ve seen evidence of water on Mars, and we know that on Earth, hydrogen can be produced biogenetically by photosynthesis and fermentation or non-biogenetically by water reacting with iron-bearing rock. It’s possible that non-biogenic processes produce hydrogen on Mars and that some microbial life form could be using that," he said.

There are many examples of bacteria living in extreme environments -- including the human body -- using hydrogen as fuel, according to Spear. "Recent studies have shown that Helicobacter pylori bacteria, which cause ulcers, live on hydrogen inside the stomach," said Spear. "Salmonella metabolizes hydrogen in the gut. It makes me wonder how many different kinds of microbes out there are metabolizing hydrogen in extreme environments."

Instead of relying on traditional techniques of microbiology that utilize cultures grown in the lab, the CU-Boulder team used methodology developed by Pace to genetically analyze the composition of the microbial community as it appeared in the field. "We didn’t look at what grows in a culture dish, we looked at the RNA of samples directly from the field," Spear said. "We’ve never before known what microbes were living in Yellowstone hot springs, and now we do," Pace said.

A novel suite of instruments was used to gather data, some of which had never before been collected. "No one had measured the concentration of hydrogen in the hot springs before because the technology didn’t exist until about seven years ago. Now we can detect very low-level concentrations of hydrogen in water," Spear explained. "We found lots of hydrogen in the hot springs -- an endless supply for bacteria," he said. Measurements of the amount of H2 in water were recorded in Yellowstone hot springs, streams and geothermal vents in different parts of the park and during different seasons. All of the environments had concentrations appropriate for energy metabolism.

The team used computer-generated thermodynamic models to find out if hydrogen was indeed the principle source of energy. "You can smell sulfide in the air at Yellowstone, and the accepted idea was that sulfur was the energy source for life in the hot springs," Spear said. Not so, according to the team’s computer models built on field measurements of hydrogen, sulfide, dissolved oxygen concentration and other factors. Spear said it was difficult to explore a microbial ecosystem. "We have a hard enough time explaining what’s going on in a forest, for example, with all the interlacing systems. We can’t even see a microbial system."

Sample extraction was a dangerous and delicate operation. In order to accurately analyze a hot spring’s entire microbial community, Spear needed to collect only about as much material as a pencil eraser. Sediment samples were scooped into special sample vials and immediately frozen in liquid nitrogen canisters to preserve the microbial community.

In springs where there was no sediment, Spear collected samples of planktonic organisms by hanging a glass slide in the water and allowing the microbes to accumulate. "Bacteria are just like us. They like to be together, they like to be attached to a surface and they like to have their food - dissolved hydrogen, in this case -- brought to them."

Spear explained that the hot springs’ colors are the result of interactions between minerals and the microbes living in the pools. Hotter water usually shows colors from minerals, and cooler water plays host to photosynthetic pigments. "Based on what I’ve seen in this analysis, I think hydrogen probably drives a lot of life in a lot of environments," Spear said. "It’s part speculation, but given the number and kinds of bacteria that are metabolizing hydrogen, it’s probably a very old form of metabolism.

That’s important because it tells us about the history of life on Earth," he said. "And if it works this way on Earth, it’s likely to happen elsewhere. When you look up at the stars, there is a lot of hydrogen in the universe."

Norman Pace | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>