Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers create new technique for speeding development of vaccines against infectious diseases

25.01.2005


Each spot on the microchip is a different protein. The bright colors indicate reactivity with serum antibodies.


Research responds to need for protection against potential bioweapons

A new technique devised by UC Irvine researchers can greatly facilitate the development of vaccines against infectious diseases such as smallpox, malaria and tuberculosis. Because the new technique can synthesize a large number of proteins very quickly, it has potential to accelerate vaccine development, particularly crucial in the fight against bioterrorism.

The technique is based on “polymerase chain reaction,” or PCR, and enables the rapid discovery of antigens for vaccines by allowing hundreds of proteins to be processed simultaneously using ordinary laboratory procedures. This new method allows the expression of 384 individual genes – pieces of DNA that contain instructions for making proteins – from a microorganism in just one week. Traditional methods take weeks to produce one protein at a time.



The UCI technique involves loading a microchip with every protein from an infectious microorganism such as smallpox, tuberculosis or malaria. When people infected with the disease react to some of the proteins included in the microchip, laser technology is used to identify these proteins for potential use in vaccines.

The researchers describe their technique in the Jan. 18, 2005 issue of the Proceedings of the National Academy of Sciences. “Technologies today are not able to quickly process large amounts of data that arrive in the form of genome sequences from many human pathogens,” said D. Huw Davies, lead author of the paper and associate project scientist in UCI’s Center for Virus Research. “Our technique addresses and removes this bottleneck. Remarkably, in only ten weeks, we can make every protein of an organism such as the tuberculosis bacterium – which has 3,900 genes.”

The researchers used their technique to identify a unique set of 11 proteins among a total of 200 proteins that make up the live virus that is used to vaccinate against smallpox today. Humans react strongly only to these 11 proteins, explained Philip Felgner, principal investigator of the research project and director of the proteomics laboratory within the Center for Virus Research. “Our method allows us to quickly identify which proteins are responsible for the protective immune response,” said Felgner, a co-author of the PNAS paper.
Scientists currently consider developing a safe vaccine to be the best way to blunt a bioterrorist threat against smallpox and other dangerous organisms that terrorists can use as weapons. “The existing live-virus vaccine against smallpox produces unacceptable side effects such as allergic reactions, sores, heart inflammation and angina,” Felgner said. “For a vaccine to be an effective defense against bioterrorism, however, it needs also to be safe. With our method, researchers can arrive very quickly at good vaccine candidates that are also extremely safe.”

The research, supported by grants from the National Institute of Allergy and Infectious Diseases, was conducted in Felgner’s proteomics laboratory. The laboratory belongs to a group of UCI biodefense laboratories developing vaccines and other countermeasures that target infectious microorganisms.

Additional co-authors of the PNAS paper are Xiaowu Liang, Jenny E. Hernandez, Arlo Randall, Siddiqua Hirst, Yunxiang Mu, Kimberly M. Romero, Toai T. Nguyen, Mina Kalantari-Dehaghi, Pierre Baldi and Luis P. Villarreal of UCI, as well as Shane Crotty of the La Jolla Institute for Allergy and Immunology.

UCI’s Center for Virus Research in the School of Biological Sciences seeks to foster interdisciplinary scholarship, training and research among UCI faculty by using molecular virology as a foundation for the creation of scientific resources. The center also promotes university-industry collaborations. Current research at the center includes vaccine antigen discovery and the testing of vaccines that use the discovered antigens.

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>