Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers create new technique for speeding development of vaccines against infectious diseases

25.01.2005


Each spot on the microchip is a different protein. The bright colors indicate reactivity with serum antibodies.


Research responds to need for protection against potential bioweapons

A new technique devised by UC Irvine researchers can greatly facilitate the development of vaccines against infectious diseases such as smallpox, malaria and tuberculosis. Because the new technique can synthesize a large number of proteins very quickly, it has potential to accelerate vaccine development, particularly crucial in the fight against bioterrorism.

The technique is based on “polymerase chain reaction,” or PCR, and enables the rapid discovery of antigens for vaccines by allowing hundreds of proteins to be processed simultaneously using ordinary laboratory procedures. This new method allows the expression of 384 individual genes – pieces of DNA that contain instructions for making proteins – from a microorganism in just one week. Traditional methods take weeks to produce one protein at a time.



The UCI technique involves loading a microchip with every protein from an infectious microorganism such as smallpox, tuberculosis or malaria. When people infected with the disease react to some of the proteins included in the microchip, laser technology is used to identify these proteins for potential use in vaccines.

The researchers describe their technique in the Jan. 18, 2005 issue of the Proceedings of the National Academy of Sciences. “Technologies today are not able to quickly process large amounts of data that arrive in the form of genome sequences from many human pathogens,” said D. Huw Davies, lead author of the paper and associate project scientist in UCI’s Center for Virus Research. “Our technique addresses and removes this bottleneck. Remarkably, in only ten weeks, we can make every protein of an organism such as the tuberculosis bacterium – which has 3,900 genes.”

The researchers used their technique to identify a unique set of 11 proteins among a total of 200 proteins that make up the live virus that is used to vaccinate against smallpox today. Humans react strongly only to these 11 proteins, explained Philip Felgner, principal investigator of the research project and director of the proteomics laboratory within the Center for Virus Research. “Our method allows us to quickly identify which proteins are responsible for the protective immune response,” said Felgner, a co-author of the PNAS paper.
Scientists currently consider developing a safe vaccine to be the best way to blunt a bioterrorist threat against smallpox and other dangerous organisms that terrorists can use as weapons. “The existing live-virus vaccine against smallpox produces unacceptable side effects such as allergic reactions, sores, heart inflammation and angina,” Felgner said. “For a vaccine to be an effective defense against bioterrorism, however, it needs also to be safe. With our method, researchers can arrive very quickly at good vaccine candidates that are also extremely safe.”

The research, supported by grants from the National Institute of Allergy and Infectious Diseases, was conducted in Felgner’s proteomics laboratory. The laboratory belongs to a group of UCI biodefense laboratories developing vaccines and other countermeasures that target infectious microorganisms.

Additional co-authors of the PNAS paper are Xiaowu Liang, Jenny E. Hernandez, Arlo Randall, Siddiqua Hirst, Yunxiang Mu, Kimberly M. Romero, Toai T. Nguyen, Mina Kalantari-Dehaghi, Pierre Baldi and Luis P. Villarreal of UCI, as well as Shane Crotty of the La Jolla Institute for Allergy and Immunology.

UCI’s Center for Virus Research in the School of Biological Sciences seeks to foster interdisciplinary scholarship, training and research among UCI faculty by using molecular virology as a foundation for the creation of scientific resources. The center also promotes university-industry collaborations. Current research at the center includes vaccine antigen discovery and the testing of vaccines that use the discovered antigens.

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>