Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers create new technique for speeding development of vaccines against infectious diseases

25.01.2005


Each spot on the microchip is a different protein. The bright colors indicate reactivity with serum antibodies.


Research responds to need for protection against potential bioweapons

A new technique devised by UC Irvine researchers can greatly facilitate the development of vaccines against infectious diseases such as smallpox, malaria and tuberculosis. Because the new technique can synthesize a large number of proteins very quickly, it has potential to accelerate vaccine development, particularly crucial in the fight against bioterrorism.

The technique is based on “polymerase chain reaction,” or PCR, and enables the rapid discovery of antigens for vaccines by allowing hundreds of proteins to be processed simultaneously using ordinary laboratory procedures. This new method allows the expression of 384 individual genes – pieces of DNA that contain instructions for making proteins – from a microorganism in just one week. Traditional methods take weeks to produce one protein at a time.



The UCI technique involves loading a microchip with every protein from an infectious microorganism such as smallpox, tuberculosis or malaria. When people infected with the disease react to some of the proteins included in the microchip, laser technology is used to identify these proteins for potential use in vaccines.

The researchers describe their technique in the Jan. 18, 2005 issue of the Proceedings of the National Academy of Sciences. “Technologies today are not able to quickly process large amounts of data that arrive in the form of genome sequences from many human pathogens,” said D. Huw Davies, lead author of the paper and associate project scientist in UCI’s Center for Virus Research. “Our technique addresses and removes this bottleneck. Remarkably, in only ten weeks, we can make every protein of an organism such as the tuberculosis bacterium – which has 3,900 genes.”

The researchers used their technique to identify a unique set of 11 proteins among a total of 200 proteins that make up the live virus that is used to vaccinate against smallpox today. Humans react strongly only to these 11 proteins, explained Philip Felgner, principal investigator of the research project and director of the proteomics laboratory within the Center for Virus Research. “Our method allows us to quickly identify which proteins are responsible for the protective immune response,” said Felgner, a co-author of the PNAS paper.
Scientists currently consider developing a safe vaccine to be the best way to blunt a bioterrorist threat against smallpox and other dangerous organisms that terrorists can use as weapons. “The existing live-virus vaccine against smallpox produces unacceptable side effects such as allergic reactions, sores, heart inflammation and angina,” Felgner said. “For a vaccine to be an effective defense against bioterrorism, however, it needs also to be safe. With our method, researchers can arrive very quickly at good vaccine candidates that are also extremely safe.”

The research, supported by grants from the National Institute of Allergy and Infectious Diseases, was conducted in Felgner’s proteomics laboratory. The laboratory belongs to a group of UCI biodefense laboratories developing vaccines and other countermeasures that target infectious microorganisms.

Additional co-authors of the PNAS paper are Xiaowu Liang, Jenny E. Hernandez, Arlo Randall, Siddiqua Hirst, Yunxiang Mu, Kimberly M. Romero, Toai T. Nguyen, Mina Kalantari-Dehaghi, Pierre Baldi and Luis P. Villarreal of UCI, as well as Shane Crotty of the La Jolla Institute for Allergy and Immunology.

UCI’s Center for Virus Research in the School of Biological Sciences seeks to foster interdisciplinary scholarship, training and research among UCI faculty by using molecular virology as a foundation for the creation of scientific resources. The center also promotes university-industry collaborations. Current research at the center includes vaccine antigen discovery and the testing of vaccines that use the discovered antigens.

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>