Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, automated tool successfully classifies and relates proteins in unprecedented way

25.01.2005


Carnegie Mellon University research enables location proteomics

For the first time, researchers have automatically grouped fluorescently tagged proteins from high-resolution images of cells. This technical feat opens a new way to identify disease proteins and drug targets by helping to show which proteins cluster together inside a cell.

The approach, developed by Carnegie Mellon University, outperforms existing visual methods to localize proteins inside cells, says Professor Robert F. Murphy, whose report, "Data Mining in Genomics and Proteomics," appears in an upcoming special issue of the Journal of Biomedicine and Biotechnology. "Our approach really enables the new field of location proteomics, which describes and relates the location of proteins within cells," said Murphy, a professor of biological sciences, machine learning, and biomedical engineering. "This work should provide a more thorough understanding of cellular processes that underlie disease."



Using this approach to spot a protein cluster could help scientists identify a common protein structure that enables those proteins to gather in one part of the cell, according to Murphy. Getting this information is critical to foil a disease like cancer, where you might want to identify and disable part of a tumor cell’s machinery needed to process proteins for cancer growth. "Our tool represents a step forward because it is based on standardized features and not on features chosen by the human eye, which is unreliable. By automating the clustering of proteins inside cell images, we also can study thousands of images fast, objectively and without error," Murphy said.

Murphy’s tool has two key components. One is a set of subcellular location features (SLFs) that describe a protein’s location in a cell image. SLFs measure both simple and complex aspects of proteins, such as shape, texture, edge qualities and contrast against background features. Like fingerprints, a protein’s SLFs act as a unique set of identifiers. Using a set of established SLFs, Murphy then developed a computational strategy for automatically clustering, or grouping, proteins based on SLF similarities and differences. For his study, Murphy used images of randomly chosen, fluorescently labeled proteins. These proteins were produced inside living cells using a technology called CD tagging, which was developed by Jonathan Jarvik and Peter Berget, both associate professors of biological sciences at Carnegie Mellon. The computational analyses were carried out together with Xiang Chen, a graduate student in the Merck Computational Biology and Chemistry program.

Chen and Murphy found that the new tool outperformed existing methods of identifying overlapping proteins within cells, such as simple visual categorization of their locations. "Our tool outperformed clustering based on the terms developed by the Gene Ontology Consortium, the best previous way of describing protein location. We found that the Gene Ontology terms were too limited to describe the many complex location patterns we found. Of course, the other drawback of term-based approaches is that they have to be assigned manually by database curators, and this is often not consistent between different curators," said Murphy.

Murphy and his colleagues are currently amassing more protein image data using CD Tagging so that they can refine their approach further. They are also working on ways to "train" a general system that will work for different cell types.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>