Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, automated tool successfully classifies and relates proteins in unprecedented way

25.01.2005


Carnegie Mellon University research enables location proteomics

For the first time, researchers have automatically grouped fluorescently tagged proteins from high-resolution images of cells. This technical feat opens a new way to identify disease proteins and drug targets by helping to show which proteins cluster together inside a cell.

The approach, developed by Carnegie Mellon University, outperforms existing visual methods to localize proteins inside cells, says Professor Robert F. Murphy, whose report, "Data Mining in Genomics and Proteomics," appears in an upcoming special issue of the Journal of Biomedicine and Biotechnology. "Our approach really enables the new field of location proteomics, which describes and relates the location of proteins within cells," said Murphy, a professor of biological sciences, machine learning, and biomedical engineering. "This work should provide a more thorough understanding of cellular processes that underlie disease."



Using this approach to spot a protein cluster could help scientists identify a common protein structure that enables those proteins to gather in one part of the cell, according to Murphy. Getting this information is critical to foil a disease like cancer, where you might want to identify and disable part of a tumor cell’s machinery needed to process proteins for cancer growth. "Our tool represents a step forward because it is based on standardized features and not on features chosen by the human eye, which is unreliable. By automating the clustering of proteins inside cell images, we also can study thousands of images fast, objectively and without error," Murphy said.

Murphy’s tool has two key components. One is a set of subcellular location features (SLFs) that describe a protein’s location in a cell image. SLFs measure both simple and complex aspects of proteins, such as shape, texture, edge qualities and contrast against background features. Like fingerprints, a protein’s SLFs act as a unique set of identifiers. Using a set of established SLFs, Murphy then developed a computational strategy for automatically clustering, or grouping, proteins based on SLF similarities and differences. For his study, Murphy used images of randomly chosen, fluorescently labeled proteins. These proteins were produced inside living cells using a technology called CD tagging, which was developed by Jonathan Jarvik and Peter Berget, both associate professors of biological sciences at Carnegie Mellon. The computational analyses were carried out together with Xiang Chen, a graduate student in the Merck Computational Biology and Chemistry program.

Chen and Murphy found that the new tool outperformed existing methods of identifying overlapping proteins within cells, such as simple visual categorization of their locations. "Our tool outperformed clustering based on the terms developed by the Gene Ontology Consortium, the best previous way of describing protein location. We found that the Gene Ontology terms were too limited to describe the many complex location patterns we found. Of course, the other drawback of term-based approaches is that they have to be assigned manually by database curators, and this is often not consistent between different curators," said Murphy.

Murphy and his colleagues are currently amassing more protein image data using CD Tagging so that they can refine their approach further. They are also working on ways to "train" a general system that will work for different cell types.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>