Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, automated tool successfully classifies and relates proteins in unprecedented way

25.01.2005


Carnegie Mellon University research enables location proteomics

For the first time, researchers have automatically grouped fluorescently tagged proteins from high-resolution images of cells. This technical feat opens a new way to identify disease proteins and drug targets by helping to show which proteins cluster together inside a cell.

The approach, developed by Carnegie Mellon University, outperforms existing visual methods to localize proteins inside cells, says Professor Robert F. Murphy, whose report, "Data Mining in Genomics and Proteomics," appears in an upcoming special issue of the Journal of Biomedicine and Biotechnology. "Our approach really enables the new field of location proteomics, which describes and relates the location of proteins within cells," said Murphy, a professor of biological sciences, machine learning, and biomedical engineering. "This work should provide a more thorough understanding of cellular processes that underlie disease."



Using this approach to spot a protein cluster could help scientists identify a common protein structure that enables those proteins to gather in one part of the cell, according to Murphy. Getting this information is critical to foil a disease like cancer, where you might want to identify and disable part of a tumor cell’s machinery needed to process proteins for cancer growth. "Our tool represents a step forward because it is based on standardized features and not on features chosen by the human eye, which is unreliable. By automating the clustering of proteins inside cell images, we also can study thousands of images fast, objectively and without error," Murphy said.

Murphy’s tool has two key components. One is a set of subcellular location features (SLFs) that describe a protein’s location in a cell image. SLFs measure both simple and complex aspects of proteins, such as shape, texture, edge qualities and contrast against background features. Like fingerprints, a protein’s SLFs act as a unique set of identifiers. Using a set of established SLFs, Murphy then developed a computational strategy for automatically clustering, or grouping, proteins based on SLF similarities and differences. For his study, Murphy used images of randomly chosen, fluorescently labeled proteins. These proteins were produced inside living cells using a technology called CD tagging, which was developed by Jonathan Jarvik and Peter Berget, both associate professors of biological sciences at Carnegie Mellon. The computational analyses were carried out together with Xiang Chen, a graduate student in the Merck Computational Biology and Chemistry program.

Chen and Murphy found that the new tool outperformed existing methods of identifying overlapping proteins within cells, such as simple visual categorization of their locations. "Our tool outperformed clustering based on the terms developed by the Gene Ontology Consortium, the best previous way of describing protein location. We found that the Gene Ontology terms were too limited to describe the many complex location patterns we found. Of course, the other drawback of term-based approaches is that they have to be assigned manually by database curators, and this is often not consistent between different curators," said Murphy.

Murphy and his colleagues are currently amassing more protein image data using CD Tagging so that they can refine their approach further. They are also working on ways to "train" a general system that will work for different cell types.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>