Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing is everything: First step in protein building revealed

24.01.2005


Timing is everything, it seems, even in science. A team led by Johns Hopkins scientists has unraveled the first step in translating genetic information in order to build a protein, only to find that it’s not one step but two.



In a series of experiments, the scientists found that when yeast’s protein-building machinery recognizes the starting line for a gene’s instructions, it first alters its structure and then releases a factor known as eIF1, a step necessary to let it continue reading the assembly instructions. Even though yeast are the most primitive relatives of humans, the protein-building machinery, or ribosomes, of each are quite similar.

"The idea is to really know at the molecular level how life is put together," says Jon Lorsch, Ph.D., professor of biophysics and biophysical chemistry, one of the departments in Johns Hopkins’ Institute for Basic Biomedical Sciences. "We see disease largely as an incorrect timing event -- the wrong thing happening at the wrong time, or the lack of the right thing."


As a result, Lorsch studies the timing of how the ribosome complex itself assembles and how other factors come and go as it translates genetic information to build proteins, the workhorses of cells. If the ribosome doesn’t start in the right place along a gene’s instructions, it will make the wrong protein, which can kill the cell or lead to disease. "The ribosome is the end stage of gene expression, and gene expression keeps us alive and causes disease," says Lorsch. "If we can better understand how the ribosome works, perhaps we can harness it to help us fix disease."

Already, scientists knew that without eIF1, the ribosome can start reading the gene’s RNA instructions at places other than a particular three-block piece of RNA known as the "start codon." And excessive amounts of eIF1 are associated with cardiac hypertrophy, or an enlarged heart.

While eIF1’s role in cardiac hypertrophy remains a mystery, the new discovery reveals exactly how eIF1 regulates the ribosome’s activity. The research team has demonstrated that eIF1’s mere presence on the yeast ribosome prevents the machinery from getting started. Only after its release from the complex can the ribosome start making proteins. "No one had any idea when eIF1 was released from the ribosome, or that its release might serve an important purpose, so this was a completely unexpected result," says graduate student David Maag, first author of the paper.

"It’s impossible to know for sure whether eIF1 is released completely in living creatures, but in our laboratory experiments that is clearly the case," adds Lorsch. "Even if it isn’t released completely in intact cells, our results would indicate that it must be very loosely associated for translation [protein building] to begin."

To monitor what was happening to eIF1, the researchers tagged it and a related part of the ribosome with different fluorescent chemicals. When two fluorescently labeled molecules are near one another, the fluorescent chemicals subtly interact, which changes the color or wavelength of light that is given off. If the distance between the fluorescent molecules changes, the color of the emitted light changes as well.

The researchers successfully used this phenomenon, known as fluorescence resonance energy transfer or FRET, to monitor the relationship between eIF1 and its relative as the ribosome complex assembled and after RNA was added to the mix. "We weren’t even sure the two fluorescent molecules would be close enough together to create a FRET signal at all," says Maag. "We were very pleased just to be able to monitor it, and then we were surprised and pleased by what we saw next."

They had expected -- or at least hoped -- to see a shift in the color of light once the RNA was mixed in. Instead, they saw two shifts in the color given off. First, there was a slight shift, indicating a small change in the distance between eIF1 and its relative, and then a much larger shift, indicating a much bigger separation.

To prove eIF1 was being released from the ribosome complex, the researchers examined how fast the pieces of the ribosome come together, and how long it takes them to fall apart under various circumstances. Their results support the idea that two separate steps take place once the instruction’s starting point is found: first a structural change in the ribosome complex, and then release of eIF1.

Lorsch’s goal is know the five "Ws" and one "H" that affect timing of all of the ribosome’s pieces and activities. But unraveling every what, when, where, why, who and how is no small task -- roughly 27 bits like eIF1 play a role at one point or another. To tackle the problem, Lorsch and his colleagues move between "timing" studies of the ribosome’s molecular comings and goings, and genetic studies that create mutant ribosome parts, which likely affect ribosome function -- and change its timing.

The authors on the study are Maag and Lorsch of Johns Hopkins; Christie Fekete of the National Institute of Child Health and Human Development; and Zygmunt Gryczynski of the University of Maryland School of Medicine.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.molecule.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>