Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DNA molecules used to assemble nanoparticles


Dendrimer complex docking on cellular folate receptors. Image: Michigan Center for Biologic Nanotechnology

University of Michigan researchers have developed a faster, more efficient way to produce a wide variety of nanoparticle drug delivery systems, using DNA molecules to bind the particles together.

Nanometer-scaled dendrimers can be assembled in many configurations by using attached lengths of single-stranded DNA molecules, which naturally bind to other DNA strands in a highly specific fashion. "With this approach, you can target a wide variety of molecules---drugs, contrast agents---to almost any cell," said Dr. James R. Baker Jr., the Ruth Dow Doan Professor of Nanotechnology and director of the Center for Biologic Nanotechnology at U-M. Nanoparticle complexes can be specifically targeted to cancer cells and are small enough to enter a diseased cell, either killing it from within or sending out a signal to identify it. But making the particles is notoriously difficult and time-consuming.

The nanoparticle system used by Baker’s lab is based on dendrimers, star-like synthetic polymers that can carry a vast array of molecules on the ends of their arms. It is possible to build a single dendrimer carrying many different kinds of molecules such as contrast agents and drugs, but the synthesis process is long and difficult, requiring months for each new molecule added to the dendrimer in sequential steps. And the yield of useful particles drops with each successive step of synthesis.

For a paper published Jan. 21 in the journal Chemistry and Biology, U-M Biomedical Engineering graduate student Youngseon Choi built nanoparticle clusters of two different functional dendrimers, one designed for imaging and the other for targeting cancer cells. Each of the dendrimers also carried a single-stranded, non-coding DNA synthesized by Choi.

In a solution of two different kinds of single dendrimers, these dangling lengths of DNA, typically 34-66 bases long, found complementary sequences on other dendrimers and knitted together, forming barbell shaped two-dendrimer complexes with folate on one end and fluorescence on the other end. Folate receptors are over-expressed on the surface of cancer cells, so these dendrimer clusters would tend to flock to the diseased cells. The other end of the complex carries a fluorescent protein so that the researchers can track their movement.

A series of experiments using cell sorters, 3-D microscopes and other tools verified that these dendrimers hit their targets, were admitted into the cells and gave off their signaling light. The self-assembled dendrimer clusters were shown to be well formed and functional. "This is the proof-of-concept experiment," Choi said. But now that the assembly system has been worked out, other forms of dendrimer clusters are in the works. "If you wanted to make a therapeutic that targeted five drugs to five different cells, it would be 25 synthesis steps the traditional way," Baker said. At two to three months per synthesis, and a significant loss of yield for each step, that approach just wouldn’t be practical.

Instead, the Baker group will create a library of single-functional dendrimers that can be synthesized in parallel, rather than sequentially, and then linked together in many different combinations with the DNA strands. "So it’s like having a shelf full of Tinker Toys," Baker said.

An array of single-functional dendrimers, such as targets, drugs, and contrast agents, and the ability to link them together quickly and easily in many different ways would enable a clinic to offer 25 different "flavors" of dendrimer with only ten synthesis steps, Baker said.

Baker foresees a nanoparticle cluster in which a single dendrimer carries three single-strands of DNA, each with a sequence specific to the DNA attached to other kinds of dendrimers. Put into solution with these other tinker toys, the molecule would self-assemble into a four-dendrimer complex carrying one drug, one target, and one fluorescent.

Karl Leif Bates | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>