Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA molecules used to assemble nanoparticles

24.01.2005


Dendrimer complex docking on cellular folate receptors. Image: Michigan Center for Biologic Nanotechnology


University of Michigan researchers have developed a faster, more efficient way to produce a wide variety of nanoparticle drug delivery systems, using DNA molecules to bind the particles together.

Nanometer-scaled dendrimers can be assembled in many configurations by using attached lengths of single-stranded DNA molecules, which naturally bind to other DNA strands in a highly specific fashion. "With this approach, you can target a wide variety of molecules---drugs, contrast agents---to almost any cell," said Dr. James R. Baker Jr., the Ruth Dow Doan Professor of Nanotechnology and director of the Center for Biologic Nanotechnology at U-M. Nanoparticle complexes can be specifically targeted to cancer cells and are small enough to enter a diseased cell, either killing it from within or sending out a signal to identify it. But making the particles is notoriously difficult and time-consuming.

The nanoparticle system used by Baker’s lab is based on dendrimers, star-like synthetic polymers that can carry a vast array of molecules on the ends of their arms. It is possible to build a single dendrimer carrying many different kinds of molecules such as contrast agents and drugs, but the synthesis process is long and difficult, requiring months for each new molecule added to the dendrimer in sequential steps. And the yield of useful particles drops with each successive step of synthesis.



For a paper published Jan. 21 in the journal Chemistry and Biology, U-M Biomedical Engineering graduate student Youngseon Choi built nanoparticle clusters of two different functional dendrimers, one designed for imaging and the other for targeting cancer cells. Each of the dendrimers also carried a single-stranded, non-coding DNA synthesized by Choi.

In a solution of two different kinds of single dendrimers, these dangling lengths of DNA, typically 34-66 bases long, found complementary sequences on other dendrimers and knitted together, forming barbell shaped two-dendrimer complexes with folate on one end and fluorescence on the other end. Folate receptors are over-expressed on the surface of cancer cells, so these dendrimer clusters would tend to flock to the diseased cells. The other end of the complex carries a fluorescent protein so that the researchers can track their movement.

A series of experiments using cell sorters, 3-D microscopes and other tools verified that these dendrimers hit their targets, were admitted into the cells and gave off their signaling light. The self-assembled dendrimer clusters were shown to be well formed and functional. "This is the proof-of-concept experiment," Choi said. But now that the assembly system has been worked out, other forms of dendrimer clusters are in the works. "If you wanted to make a therapeutic that targeted five drugs to five different cells, it would be 25 synthesis steps the traditional way," Baker said. At two to three months per synthesis, and a significant loss of yield for each step, that approach just wouldn’t be practical.

Instead, the Baker group will create a library of single-functional dendrimers that can be synthesized in parallel, rather than sequentially, and then linked together in many different combinations with the DNA strands. "So it’s like having a shelf full of Tinker Toys," Baker said.

An array of single-functional dendrimers, such as targets, drugs, and contrast agents, and the ability to link them together quickly and easily in many different ways would enable a clinic to offer 25 different "flavors" of dendrimer with only ten synthesis steps, Baker said.

Baker foresees a nanoparticle cluster in which a single dendrimer carries three single-strands of DNA, each with a sequence specific to the DNA attached to other kinds of dendrimers. Put into solution with these other tinker toys, the molecule would self-assemble into a four-dendrimer complex carrying one drug, one target, and one fluorescent.

Karl Leif Bates | EurekAlert!
Further information:
http://nano.med.umich.edu
http://lifesciences.umich.edu
http://www.chembiol.com

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>