Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues to our birth may be written in space

24.01.2005


Extraterrestrial molecules found in meteorites may hold the key to the origin of life on Earth, according to chemistry research at the University.



Dr Terence Kee and a team from Leeds and Bradford universities are examining a particular source of phosphorus found naturally only in space to discover whether it could have helped form the building blocks of life.

Phosphorus is found in all living cells, but some scientists doubt that the most common form of phosphorus – phosphate – helped form life on earth due to its insolubility in water. Dr Kee believes the earliest forms of DNA/RNA could have been built from other phosphorus-containing molecules called phosphonates, because they are water-soluble and more reactive.


However, these phosphonates are only found on Earth as biological products – for example, in the metabolism of certain marine creatures.

The project was inspired by a 1992 account identifying phosphonates in a meteorite which crashed on earth, confirming that these had been created in interstellar space. “I’ve always had an interest in phosphonates but before reading work on the Murchison meteorite, I’d never considered they might have a role to play in the origins of life on Earth,” said Dr Kee.

These exotic molecules now form the basis of the PHOSMETIC project, refereed by the Nobel Laureate Sir Harry Kroto. The team will reproduce these phosphonates under ‘extra-terrestrial’ conditions in a laboratory. Important molecules called phosphaalkynes – present in interstellar gas clouds and structurally similar to phosphonates – will be used. They will be irradiated with UV light in the presence of water, simulating the conditions found in space. Dr Kee aims to provide the first direct chemical link between phosphorus compounds found within interstellar gas clouds and those incorporated within solar system meteorites and ice grains: “I see the PHOSMETIC project as addressing one of several major problems in origin-of-life studies in which phosphorus, and phosphonates in particular, could play a major role.”

Claire Jones | alfa
Further information:
http://www.chem.leeds.ac.uk/People/Kee.html
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>