Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues to our birth may be written in space

24.01.2005


Extraterrestrial molecules found in meteorites may hold the key to the origin of life on Earth, according to chemistry research at the University.



Dr Terence Kee and a team from Leeds and Bradford universities are examining a particular source of phosphorus found naturally only in space to discover whether it could have helped form the building blocks of life.

Phosphorus is found in all living cells, but some scientists doubt that the most common form of phosphorus – phosphate – helped form life on earth due to its insolubility in water. Dr Kee believes the earliest forms of DNA/RNA could have been built from other phosphorus-containing molecules called phosphonates, because they are water-soluble and more reactive.


However, these phosphonates are only found on Earth as biological products – for example, in the metabolism of certain marine creatures.

The project was inspired by a 1992 account identifying phosphonates in a meteorite which crashed on earth, confirming that these had been created in interstellar space. “I’ve always had an interest in phosphonates but before reading work on the Murchison meteorite, I’d never considered they might have a role to play in the origins of life on Earth,” said Dr Kee.

These exotic molecules now form the basis of the PHOSMETIC project, refereed by the Nobel Laureate Sir Harry Kroto. The team will reproduce these phosphonates under ‘extra-terrestrial’ conditions in a laboratory. Important molecules called phosphaalkynes – present in interstellar gas clouds and structurally similar to phosphonates – will be used. They will be irradiated with UV light in the presence of water, simulating the conditions found in space. Dr Kee aims to provide the first direct chemical link between phosphorus compounds found within interstellar gas clouds and those incorporated within solar system meteorites and ice grains: “I see the PHOSMETIC project as addressing one of several major problems in origin-of-life studies in which phosphorus, and phosphonates in particular, could play a major role.”

Claire Jones | alfa
Further information:
http://www.chem.leeds.ac.uk/People/Kee.html
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>